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What is L2O?

Classic optimizers are manually designed, they usually have few or
no tuning parameters

Learned optimizers are trained in an L2O framework over a set of
similar optimizees (called a task distribution) and designed to
solve unseen optimizees from the same distribution
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Why L2O?

An optimizer learned by L2O is much faster than classic methods

The learned optimizer may also return a higher-quality solution to
a difficult task than classic methods
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Why Theory?

We need an interpretable and reliable model with guaranteed
worst performance

Theory leads to an eifficient model with smaller size and less
computational complexity (both in training and in testing)

Heuristic method is cheap
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Sparse Coding

A classical problem in source coding, signal reconstruction,
pattern recognition and feature selection

There is an unknown sparse vector x∗ = [x∗1, · · · , x∗M ]> ∈ RM . We
have its noisy linear measurements:

b =

M∑
m=1

dmx
∗
m + ε = Dx∗ + ε

where b ∈ RN , D = [d1, · · · , dM ] ∈ RN×M is the dictionary, and
ε ∈ RN is additive Gaussian white noise

Normalized dictionary: ‖dm‖2 = ‖D:,m‖2 = 1,m = 1, 2, · · · ,M
Under-determined system: N �M

Reconstruct x∗ using a sparse linear combination of dm

Expensive inference algorithm prohibits real-time applications
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Problem Formulation

min
x

1

2
‖b−Dx‖22 + λ‖x‖1, where b = Dx∗ + ε

A popular approach for sparse coding

x∗ can be recovered faithfully when it is sufficiently sparse

Iterative Shrinkage Thresholding Algorithm (ISTA):

xk+1 = ηλ/L(xk +
1

L
D>(b−Dxk)), k = 0, 1, 2, . . .

where ηθ(x) = sign(x) max(0, |x| − θ) and L is usually taken as the
largest eigenvalue of D>D, λ is a hyper parameter
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LISTA

Let W1 = 1
LD
>, W2 = I − 1

LD
>D, θ = 1

Lλ. ISTA can be written as

xk+1 = ηθ(W1b+W2x
k)

ISTA can be recognized as a Recurrent Neural Network (RNN)

Unrolling the RNN and truncating it into K iterations:

xk+1 = ηθk(W k
1 b+W k

2 x
k), k = 0, 1, · · · ,K − 1,

leads to a K-layer feed-forward neural network named Learned
ISTA (LISTA) with trainable weights Θ = {W k

1 ,W
k
2 , θ

k}Kk=1.

Figure 3: RNN
Structure of ISTA

Figure 4: Unrolled Learned ISTA Network
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LISTA with Coupling Weights (LISTA-CP)

We only parameterize the first D inside η, then get the LISTA with
CouPling weights:

xk+1 = ηθk(xk + (W k)>(b−Dxk)),
where the trainable weights are reduced to Θ = {W k, θk}Kk=1.
Generalized Mutual Coherence:

µ̃(D) = inf
W∈RN×M

W>:,iD:,i=1

 max
i 6=j

1≤i,j≤M

W>:,iD:,j


LP: minimizing a piece-wise linear function with linear constraints

Feasible, and
0 ≤ µ̃(D) ≤ max

i 6=j
1≤i,j≤M

D>i Dj .

µ̃ is bounded, exists optimal solution

Define W(D) =
{
W ∈ RN×M : W attains the infimum

}
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Analytic LISTA: Less Parameters To Learn

Tied LISTA (TiLISTA):

xk+1 = ηθk
(
xk − γkW>

(
Dxk − b

))
,

where Θ = W ∪ {γk, θk}Kk=1 are trainable weights

Following above theorem, we compute W̃ by solving

W̃ ∈ arg min
W∈RN×M

∥∥∥W>D∥∥∥2

F
, s.t. (W:,m)>D:,m = 1,∀m

We set W k = γkW̃ , and propose Analytic LISTA (ALISTA):

xk+1 = ηθk(xk − γkW̃>(Dxk − b)),
where Θ = {γk, θk}Kk=1 are parameters to train

Table 1: Summary: variants of LISTA and the number of parameters to learn.

LISTA LISTA-CP TiLISTA ALISTA

O
(
KM2 +K +MN

)
O(KNM +K) O(NM +K) O(K)
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Robust ALISTA to Model Perturbation (Meta-Net)

Many applications, such as often found in surveillance video
scenarios (Zhao et al., 2011; Han et al., 2013), can be formulated
as sparse coding models whose dictionaries are subject to small
dynamic perturbations (e.g, slowly varied over time)

D : D = D + εD, where εD is some small stochastic perturbation

Sample a perturbed dictionary D̃. Sample x and ε to generate b
w.r.t. D̃. Apply Stage 1 of ALISTA w.r.t. D̃ and obtain W̃

Instead of an iterative algorithm, we use a neural network that
unfolds that algorithm (Meta-Net) to produce W̃. Apply Stage 2
of ALISTA w.r.t. W̃,D,x, and b to obtain {γk, θk}k
D̃ becomes the data for training the Meta-Net that generates W̃

This neural network is faster to apply than the iterative method
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Training Process

For each model, xK depends on Θ, b, x0. Denote xK as xK(Θ, b, x0)

Given the distribution of b, x∗, the optimization problem is

min
Θ

E(b,x∗)‖xK(Θ, b, x0)− x∗‖22.

Stochastic gradient descent (SGD) can be applied to solve this
minimization problem. The gradient w.r.t. xK on Θ are obtained
with the chain rule
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Trick: Layer-wise Training

Denote Θτ = {(W k
1 ,W

k
2 , θ

k)}τk=0 all the weights in the τ -th and
all the previous layers

Learning multiplier c(·) initialized as 1 to each weight

Initial learning rate α0 and two decayed learning rates α1, α2. In
real training, we have α1 = 0.2α0, α2 = 0.02α0

Train (W τ
1 ,W

τ
2 , θ

τ ) the initial learning rate α0

Train Θτ = Θτ−1 ∪ (W τ
1 ,W

τ
2 , θ

τ ) with the learning rates α1 and α2

Multiply a decaying rate γ (set to 0.3 in experiments) to each
weight in Θτ
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Code for Layer-wise Training

1 loss_ = tf.nn.l2_loss (xhs_ [t+1] - x_)

2

3 var_list = tuple ([var for var in model.vars_in_layer[t] if

var not in train_vars ])

4

5 op_ = tf.train.AdamOptimizer(init_lr).minimize(loss_ ,

var_list=var_list)

6 ...

7 for var in var_list:

8 train_vars.append (var)

9

10 # Train all variables in current and former layers with

decayed

11 for lr in lrs:

12 op_ = tf.train.AdamOptimizer(lr_multiplier*lr).minimize(

loss_ ,var_list=train_vars)

13 # decay learning rates for trained variables

14 for var in train_vars:

15 lr_multiplier [var.op.name] *= decay_rate
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Neccessary Condition for Convergence

Assumption: b = Dx∗, x0 = 0 and

x∗ ∈ X (B, s) , {x∗ | |x∗i | ≤ B, ∀i, ‖x∗‖0 ≤ s}

xk depends on {W τ
1 ,W

τ
2 , θ

τ}k−1
τ=0, b, x

0. Using b = Dx∗, x0 = 0, xk

can be represented as

xk({W τ
1 ,W

τ
2 , θ

τ}k−1
τ=0, x

∗)

Theorem (Neccessary Condition for Convergence of LISTA)

If xk({W τ
1 ,W

τ
2 , θ

τ}k−1
τ=0, x

∗)→ x∗ uniformly for x∗ ∈ X (B, s) as k →∞,
and ‖W k

2 ‖2 ≤ BW , ∀k, where BW is a positive constant, we have

θk → 0, W k
2 − (I −W k

1 D)→ 0, as k →∞
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Proof of θk → 0

Since xk → x∗ uniformly, there exists K1, ∀k ≥ K1, |xki − x∗i | < B
10

Denote

X (B̃, B, s) , {x∗ | B̃ ≤ |x∗i | ≤ B, ∀i ∈ supp(x∗), ‖x∗‖0 ≤ s}

Above inequality holds for any x∗ ∈ X (B/10, B, s), we have

sign(xk) = sign(x∗), ∀k ≥ K1

Let S = supp(x∗), consider the support set elements

xk+1
S =ηθk(W k

2 (S, S)xkS +W k
1 (S, :)b)

=W k
2 (S, S)xkS +W k

1 (S, :)b− θk sign(x∗S)
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Proof of θk → 0

∀ε > 0, there exists K2, such that ∀k ≥ K2, ‖xk − x∗‖2 ≤ ε
Suppose k ≥ max{K1,K2}, and xk = x∗ + ξ1, x

k+1 = x∗ + ξ2, then

xk+1
S = W k

2 (S, S)xkS +W k
1 (S, :)b− θk sign(x∗S)

⇔ x∗S + ξ2 = W k
2 (S, S)(x∗S + ξ1) +W k

1 (S, :)b− θk sign(x∗S)

Denote ξ = W k
2 (S, S)ξ1 − ξ2, we have ‖ξ‖2 ≤ (1 +BW )ε and

(I −W k
2 (S, S)−W k

1 D(S, S))x∗S = θk sign(x∗S)− ξ

Take x∗ ∈ X (B/10, B/2, s), above formula holds for 2x∗

(I −W k
2 (S, S)−W k

1 D(S, S))2x∗S = θk sign(x∗S)− ξ′

Subtracting the above two formulas yields

θksign(x∗S) = 2ξ − ξ′ ⇒ θk ≤ 3(1 +BW )√
|S|

ε⇒ θk → 0
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Proof of W k
2 − (I −W k

1D)→ 0

By optimality condition

xk+1
S ∈W k

2 (S, :)xk +W k
1 D(S, S)x∗S − θk∂`1(xk+1

S ),

where ∂`1(x) is the sub-gradient of ‖x‖1
xk converging uniformly implies, for any ε > 0, x∗ ∈ X (B, s), there
exists K3, such that ∀k ≥ K3, ‖xk − x∗‖2 ≤ ε
Suppose xk = x∗ + ξ3, x

k+1 = x∗ + ξ4, above formula equals to(
I−W k

2 (S, S)−W k
1 D(S, S)

)
x∗S ∈W k

2 (S, :)ξ3− (ξ4)S− θk∂`1(xk+1
S )

By ‖∂`1(xk+1
S )‖2 ≤

√
|S|∥∥∥(I −W k

2 (S, S)−W k
1 D(S, S)

)
x∗S

∥∥∥
2
≤ ‖W k

2 ‖2ε+ ε+ θk
√
|S| → 0

By the arbitrariness of the x∗ ∈ X (B, s)⇒W k
2 − (I −W k

1 D)→ 0
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Recovery Error Upper Bound

Theorem (Recovery Error Upper Bound of LISTA-CP)

Take any x∗ ∈ X (B, s), any W ∈ W(D), any γk ∈ (0, 2
2µ̃s−µ̃+1). Using

them, define the parameters {W k, θk}

W k = γkW, θk = γkµ̃(D) sup
x∗∈X (B,s)

{‖xk(x∗)− x∗‖1}

while the sequence {xk(x∗)}∞k=1 is generated by LISTA-CP using the
above parameters and x0 = 0 (Note that each xk (x∗) depends only on
θk−1, θk−2, . . . and defines θk). Let s < (1 + 1/µ̃)/2. We have

supp(xk(x∗)) ⊂ S, ‖xk(x∗)− x∗‖2 ≤ sB exp(−
k−1∑
τ=0

cτ ), k = 1, 2, . . .

where S = supp(x∗) and ck = − log((2µ̃s− µ̃)γk + |1− γk|) > 0.
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Parameters Selection with No False Positives

We have the neccessary condition:

xk → x∗ ⇒ ‖x
k
S‖2

‖xk‖2
→ ‖x

∗
S‖2

‖x∗‖2

Does there exist θk, γk, such that for any k, supp(xk) ⊂ S?

Yes. Assuming supp(xk) ⊂ S, for any i /∈ S, we have

xk+1
i = ηθk(−γk

∑
j∈S

W>:,j(Dx
k − b))

Note that ηθ(x) = sign(x) max(|x| − θ, 0). When

θk = γkµ̃(D) sup
x∗∈X (B,s)

{‖xk(x∗)− x∗‖1} ≥ γk|
∑
j∈S

W>:,j(Dx
k − b)|,

we have xk+1
i = 0.
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Proof of Recovery Error Upper Bound

Take arbitrary x∗ ∈ X (B, s). For all i ∈ S, by optimality
condition, we obtain

xk+1
i ∈ xki − γkW>:,iD:,S(xkS − x∗S)− θk∂`1(xk+1

i )

where ∂`1(x) is the sub-gradient of |x|, x ∈ R :

∂`1(x) =

{
{sign(x)} if x 6= 0
[−1, 1] if x = 0

The choice of W ∈ W(D) gives W>:,iD:,i = 1. Thus,

xki − γkW>:,iD:,S(xkS − x∗S)

=xki − γk
∑

j∈S,j 6=i
W>:,iD:,j(x

k
j − x∗j )− γk(xki − x∗i )

=x∗i − γk
∑

j∈S,j 6=i
W>:,iD:,j(x

k
j − x∗j ) + (1− γk)(xki − x∗i )
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Proof of Recovery Error Upper Bound

For all i ∈ S

xk+1
i ∈ x∗i−γk

∑
j∈S,j 6=i

W>:,iD:,j(x
k
j−x∗j )+(1−γk)(xki−x∗i )−θk∂`1(xk+1

i )

Thus

|xk+1
i − x∗i | ≤

∑
j∈S,j 6=i

γk|W>:,iD:,j ||xkj − x∗j |+ θk + |1− γk||xki − x∗i |

≤ µ̃γk
∑

j∈S,j 6=i
|xkj − x∗j |+ θk + |1− γk||xki − x∗i |

Note that ‖xk − x∗‖1 = ‖xkS − x∗S‖1, summing i ∈ S yields

‖xk+1 − x∗‖1 ≤(|S| − 1)µ̃γk‖xk − x∗‖1 + |S|θk + |1− γk|‖xk − x∗‖1
=((|S| − 1)µ̃γk + |1− γk|)‖xk − x∗‖1 + |S|θk
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Proof of Recovery Error Upper Bound

The assumption s < (1 + 1/µ̃)/2 gives 2µ̃s− µ̃ < 1. If 0 < γk ≤ 1,
we have ck > 0. If 1 < γk < 2/(1 + 2µ̃s− µ̃), we have

(2µ̃s− µ̃)γk +
∣∣∣1− γk∣∣∣ = (2µ̃s− µ̃)γk + γk − 1 < 1,

which implies ck = − log((2µ̃s− µ̃)γk + |1− γk|) > 0

Taking supremum of the last inequality over x∗ ∈ X (B, s), by
|S| ≤ s and θk = γkµ̃ supx∗ ‖xk − x∗‖1,

sup
x∗
‖xk+1 − x∗‖1 ≤ ((2µ̃s− µ̃)γk + |1− γk|) sup

x∗
‖xk − x∗‖1

≤ exp(−
k∑
τ=0

cτ ) sup
x∗
‖x0 − x∗‖1

≤ sB exp(−
k∑
τ=0

cτ )
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Numerical Results

Settings: N = 250,M = 500 and Di,j ∼ N (0, 1
N ) with ‖D:,j‖2 = 1

Set the number of truncated layers K = 16. Training process:

min
Θ

Ex∗‖xK(Θ)− x∗‖2
Θ is learnable parameters and is different in different models

Figure 5: NMSE = 10 log10 (E‖xK(Θ)−x∗‖2
E‖x∗‖2 )
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Validation of Neccessary Condition for Convergence
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Figure 6: θk → 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.5

1

1.5

2

2.5

3

Figure 7: W k
2 − (I −W k

1 D)→ 0
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Validation of Theorem

Figure 8: γk ∈ (0, 2
2µ̃s−µ̃+1 )

Figure 9: θk = γkµ̃ sup{‖xk(x∗)− x∗‖1}

Figure 10: true positives =
E‖xk

S(x∗)‖2
E‖xk(x∗)‖2 , false positives =

E‖xk
Sc (x∗)‖2

E‖xk(x∗)‖2
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CS-MRI

Magnetic Resonance Imaging (MRI) is a non-invasive imaging
technique for clinical diagnosis

Compressive sensing MRI (CS-MRI) methods first sample data,
then reconstruct image using compressive sensing theory

Challenging to choose an optimal image transform domain and the
corresponding sparse regularization

Alternating Direction Method of Multipliers (ADMM) is efficient
but it is not trivial to determine the optimal parameters
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General CS-MRI Model

Assume x ∈ CN is an MRI image to be reconstructed

y ∈ CN ′(N ′ < N) is the under-sampled k-space data

The reconstructed image can be estimated by solving:

x̂ = arg min
x
{1

2
‖Ax− y‖22 +

L∑
l=1

λlg(Dlx)},

where A = PF ∈ RN ′×N is a measurement matrix, P ∈ RN ′×N is a
under-sampling matrix, and F is a Fourier transform. Dl denotes
a transform matrix for a filtering operation. g(·) is a regularization
function. λl is a regularization parameter
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ADMM Algorithm

Introduce auxiliary variables z = {z1, z2, · · · , zL}:

min
x,z

1

2
‖Ax− y‖22 +

L∑
l=1

λlg(zl) s.t. zl = Dlx, l = 1, 2, · · · , L

Augmented Lagrangian function:

Lρ(x, z, α) =
1

2
‖Ax− y‖22 +

L∑
l=1

λlg(zl)−
L∑
l=1

〈αl, zl −Dlx〉

+

L∑
l=1

ρl
2
‖zl −Dlx‖22

where α = {αl} are Lagrangian multipliers and ρ = {ρl} are
penalty parameters
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ADMM Algorithm

Alternatively optimizes {x, z, α} and substitute A = PF, βl = αl
ρl

:
xn = F>G−1[P>y +

L∑
l=1

ρlFD
>
l (zn−1

l − βn−1
l )]

znl = S(Dlx
n + βn−1

l ;λl/ρl)

βnl = βn−1
l + ηl(Dlx

n − znl )

where G = P>P +
∑L

l=1 ρlFD
>
l DlF

>, S(·) is a nonlinear
shrinkage function, ηl is an update rate

xn can be efficiently computed by Fast Fourier Transform

Needs to run dozens of iterations to get a satisfactory result

Challenging to choose the transform Dl and shrinkage function
S(·) for general regularization function g(·)
Not trivial to tune the parameters ρl and ηl for different data
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Data Flow Graph for the ADMM Algorithm

stage n
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Figure 11: The data flow graph for the ADMM. This graph consists of four
types of nodes: reconstruction (X), convolution (C), non-linear transform
(Z), and multiplier update (M).
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ADMM-Net

ADMM-Net is defined over the data flow graph

Reconstruction layer Xn: Substituting Dl, ρl with Hn
l , ρ

n
l , we get

xn = F>(P>P +

L∑
l=1

ρnl F (Hn
l )>Hn

l F
>)−1[P>y

+

L∑
l=1

ρnl F (Hn
l )>(zn−1

l − βn−1
l )]

where Hn
l is the l-th learnable filter, ρnl is the l-th learnable

penalty parameter, and y is the input under-sampled data

Convolution layer Cn:
cnl = Dn

l x
n

where Dn
l is a learnable filter matrix in stage n. Different from the

original ADMM, we do not constrain the filters Dn
l and Hn

l to be
the same to increase the network capacity
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ADMM-Net

Nonlinear transform layer Zn : Use piecewise linear function to
replace the shrinkage function S(·). Given cnl and βn−1

l :

znl = SPLF (cnl + βn−1
l ; {pi, qnl,i}Nc

i=1),

where SPLF (·) is determined by a set of control points {pi, qnl,i}Nc
i=1

SPLF (a; {pi, qnl,i}Nc
i=1) =


a+ qnl,1 − p1, a < p1,

a+ qnl,Nc
− pNc , a > pNc

qnl,k +
(a−pk)(qnl,k+1−q

n
l,k)

pk+1−pk , p1 ≤ a ≤ pNc

where k = b a−p1p2−p1 c, {pi}
Nc
i=1 are predefined positions uniformly

located within [−1, 1], and {qnl,i}Nc
i=1 are the values at these

positions for l-th filter in n-th stage
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ADMM-Net

(𝒑𝒊,𝒒𝒍,𝒊
(𝒏)

)

… …
-1 1

Figure 12: Illustration of a piecewise linear function SPLF (·; {pi, qnl,i}Nc
i=1).

Multiplier update layer Mn:

βnl = βn−1
l + ηnl (cnl − znl )

where ηnl are learnable parameters.

Network Parameters: Hn
l and ρnl in reconstruction layer, filters Dn

l

in convolution layer, {qnl,i}Nc
i=1 in nonlinear transform layer, ηnl in

multiplier update layer, where l = 1, 2, · · · , L and n = 1, 2, · · · , Ns
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Network Training

Given the training data Γ, the loss function is:

E(Θ) =
1

|Γ|
∑

(y,x∗)∈Γ

‖x̂(y,Θ)− x∗‖2
‖x∗‖2

where x̂(y,Θ) is the network output based on network parameter Θ and
under-sampled data y, Θl = {(qnl,i)Nc

i=1, D
n
l , H

n
l , ρ

n
l , η

n
l }Ns

n=1,Θ = {Θl}Ll=1

We learn the parameters by minimizing the loss w.r.t. Θ using L-BFGS
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Multiplier Update Layer

Three sets of inputs:{βn−1
l }, {cnl } and {znl }

Its output {βnl } is the input to compute {βn+1
l }, {zn+1

l } and xn+1

The parameters of this layer are ηnl , l = 1, · · · , L
The gradients of loss w.r.t. the parameters can be computed as:
∂E
∂ηnl

= ∂E
∂βn

l

∂βn
l

∂ηnl
, where ∂E

∂βn
l

= ∂E
∂βn+1

l

∂βn+1
l
∂βn

l
+ ∂E

∂zn+1
l

∂zn+1
l
∂βn

l
+ ∂E

∂xn+1
∂xn+1

∂βn
l
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Nonlinear Transform Layer

Two sets of inputs:{βn−1
l }, {cnl }

Its output {znl } is the input for computing {βnl } and xn+1

The parameters of this layers are {qnl,i}Nc
i=1, l = 1, · · · , L

The gradient of loss w.r.t. parameters can be computed as

∂E

∂qnl,i
=
∂E

∂znl

∂znl
∂qnl,i

, where
∂E

∂znl
=

∂E

∂βnl

∂βnl
∂znl

+
∂E

∂xn+1

∂xn+1

∂znl
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Convolution Layer

The parameters of this layer are Dn
l (l = 1, · · · , L). We represent

the filter by Dn
l =

∑t
m=1 ω

n
l,mBm, where Bm is a basis element,

and {ωnl,m} is the set of filter coefficients to be learned

The gradients of loss w.r.t. filter coefficients are computed as:

∂E

∂ωnl,m
=
∂E

∂cnl

∂cnl
∂ωnl,m

, where
∂E

∂cnl
=

∂E

∂βnl

∂βnl
∂cnl

+
∂E

∂znl

∂znl
∂cnl

The gradient of layer output w.r.t. input is computed as
∂cnl
∂xn
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Reconstruction Layer

The parameters of this layer are Hn
l , ρ

n
l (l = 1, · · · , L)

Represent the filter by Hn
l =

∑s
m=1 γ

n
l,mBm, {γnl,m} is learnable

The gradients w.r.t. parameters: ∂E
∂γnl,m

= ∂E
∂xn

∂xn

∂γnl,m
, ∂E∂ρnl

= ∂E
∂xn

∂xn

∂ρnl

where
∂E

∂xn
=


∂E

∂cn
∂cn

∂xn
, n ≤ Ns

1

|Γ|
(xn − xgt)√

‖xgt‖22
√
‖xn−xgt‖22

, if n = Ns + 1
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Result

Figure 13: (a) Scatter plot of NMSEs and average test time for different
methods; (b) The NMSEs of ADMM-Net using different number of stages
(20% sampling ratio for brain data).
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Background

Wide area network (WAN): to transmit data over long distances

There are K flows and the size of k-th flow is sk; total available
number of paths for flow k is Pk; link capacity cl, l = 1, 2, · · · , L.
E.g. 4-ary Fat Tree topology

Maximize one kind of utility functions among all flows, i.e.∑K
k=1 Uk(‖xk‖1), where xk is the rate allocation and path

selection vector of flow k
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Example

max log(x1,1 + x1,2) + log(x2,1 + x2,2),

s.t. x2,1 + x1,2 ≤ 1, · · ·

K flows with the size sk for the flow k
Pk available paths for flow k
L links with the link capacity cl for the link l
xk = (xk,1, · · · , xk,Pk

)> is the rate allocation vector of flow k
Routing matrix: R = (R1,R2, · · · ,RK)

N

S1

D

S2

1

24

𝑥!,#
3

𝑥#,#

𝑥#,#

𝑥#,!

𝑥!,#

𝑥!,!

5

Figure 14: A network with two
users and five links.

Figure 15: Routing matrix.
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Network Utility Maximization (NUM)

Common choices of Uk(‖xk‖1): fairness log(‖xk‖1) or delay
− sk
‖xk‖1 . We choose Uk(‖xk‖1) = β log(‖xk‖1)− sk/‖xk‖1

Network Utility Maximization (NUM) problem:

max
x

∑
k

Uk(‖xk‖1),

s.t. Rx ≤ c,
x ≥ 0,

⇐⇒

max
x,y

∑
k

Uk(‖xk‖1),

s.t. y ≤ c,
x ≥ 0,

y = Rx

where R = [R1,R2, · · · ,RK ] ∈ RL×K is the routing matrix
(sparse), x = [x1;x2; · · · ;xK ]

Augmented Lagrangian:

Lρ(x,y, z) = −
K∑
k=1

Uk(‖xk‖1)− z>(y −Rx) +
ρ

2
‖y −Rx‖22
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x-update

xj ← arg min
x

−
K∑
k=1

Uk(‖xk‖1)− (zj−1)>(yj−1−Rx) +
ρ

2
‖yj−1−Rx‖22,

Hard to solve, because the components of x are coupled

Linearize the quadratic term and add a proximal term:

xj = arg min
x

−
K∑
k=1

Uk(‖xk‖1)− ρ〈R>ξ,x− xj−1〉+
µ

2
‖x− xj−1‖22

= arg min
x

−
K∑
k=1

Uk(‖xk‖1) +
µ

2
‖x− xj−1 − ρ

µ
R>ξj−1‖22,

where ξj−1 = yj−1 −Rxj−1 − zj−1

ρ
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x-update

Separable for different source. For k-th source:

xjk = arg min
xk

−Uk(‖xk‖1) +
µ

2
‖xk − νj−1

k ‖22,

where νj−1 = xj−1 + ρ
µR
>(yj−1 −Rxj−1 − zj−1

ρ )

The elements of νj−1
k = (νj−1

k,1 , ν
j−1
k,2 , · · · , ν

j−1
k,Pk

)> are in descending
order:

xjk,i = max(0, νj−1
k,i + ζk), where µi′ζk = U ′k(

i′∑
i=1

max(0, νj−1
k,i + ζk)),

i′ is the maximal index: U ′k(
∑i′

i=1 max(0, νj−1
k,i − ν

j−1
k,i′ )) ≥ −µνj−1

k,i′

ζk can be found by solving

rk −
β

µ

1

rk
− sk
µK

1

r2
k

=

∑i′

i=1 ν
j−1
k,i

µ

where rk =
∑i′

i=1(νj−1
k,i + ζk)
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x-update

0.5 1.0 1.5 2.0 2.5 3.0

−20

−15

−10

−5

0

x− b

x
− c

x2
, b, c > 0

any real number

Figure 16: An illustration of finding ζk.

We denote the mapping between νj−1
k and xjk as

xjk = Ck(νj−1
k )
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y-update

yj ← arg min
y≤c

ρ

2
‖y −Rxj‖22 − (zj−1)>(y −Rxj).

The solution is

yj = −PRL
+

(c−Rxj − z
j−1

ρ
) + c,

where PRL
+

is the Euclidean projection on

RL+ = {(x1, x2, · · · , xL)> | xi > 0, i = 1, 2, · · · , L}

Zhonglin Xie (Peking University) ADMM-Net July 31, 2021 47 / 54



ADMM for NUM



xjk ← Ck(ν
j−1
k ), k = 1, . . . ,K,

yj ← −PRL
+

(c−Rxj − z
j−1

ρ
) + c,

zj ← zj−1 − γρ(yj −Rxj),

νj ← xj +
ρ

µ
R>(yj −Rxj − z

j

ρ
),

where γ is the update coffecient of Lagrangian multiplier

x0 y0

z0

ν0 x1 y1

z1

ν1 x2 y2

z2

ν2 x3 y3

z3

ν3 x4

Figure 17: Data flow graph of ADMM, where x0,y0, z0 are fixed initial
values, s is the input
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ADMM-Net1



xjk ← Ck(ν
j−1
k ), k = 1, . . . ,K,

yj ← −PRL
+

(Rxj − σ � zj−1 + tj) + c,

zj ← zj−1 − γ(yj −Rxj)� σj ,
νj ← xj +

ρ

µ
(W j)>(yj −Rxj − σ � zj),

where Θ = {W j , σj , tj}Tj=1 are the trainable weights

zj−1

νj−1 xjk ← C(ν
j−1
k ),∀k

yj ← −PRL
+
(Rxj − σ � zj−1 + tj) + c

zj ← zj−1 − γ(yj −Rxj)� σj

νj ← xj + ρ
µ (W

j)>(yj −Rxj − σ � zj)

Figure 18: A typical layer of ADMM-Net.
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ADMM-Net2

Consider the general cubic equation

x3 + ax2 − bx− c = 0⇔ x− b

x
− c

x2
= −a,

where b, c > 0

0.5 1.0 1.5 2.0 2.5 3.0

−20

−15

−10

−5

0

x− b

x
− c

x2
, b, c > 0

any real number

Fixing b, c, denote the only positive root as r(a). As illustrated, we
have r(a)→ 0, as a→ +∞, r(a)→ −a, as a→ −∞
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Approximation of Ck(·)
We use a single branch of the rotated hyperbola to approximate it

[(a+mk) + (y + nk)](y + nk) = λk

⇒Ak(a;mk, nk, λk) = y =

√
(a+mk)2

4
+ λk −

a+mk

2
− nk
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Difference between Cardano's formula and our approxiamtion
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ADMM-Net2



xjk ← A(νj−1
k ;λk,mk, nk), k = 1, . . . ,K,

yj ← −PRL
+

(Rxj − σ � zj−1 + tj) + c,

zj ← zj−1 − γ(yj −Rxj)� σj ,
νj ← xj +

ρ

µ
(W j)>(yj −Rxj − σ � zj),

where Θ = {W j , σj , tj}Tj=1 ∪ {λk,mk, nk}Kk=1 are the trainable weights.

xj(s; {W τ , στ , tτ}j−1
τ=1 ∪ {λk,mk, nk}Kk=1) is the output of ADMM-Net2

at j-th layer
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Numerical Results

Table 2: classic ADMM vs deep unrolling ADMM in small example.

method loss obj delay fairness load iteration/layers

ADMM 0 -0.619 1.944 2.563 1.00 3207

ADMM-Net1 0.026 -2.389 0.298 2.687 31.45 1

ADMM-Net2 0.072 0.645 3.230 2.585 1.00 1

ADMM-Net1 0.022 -2.358 0.328 2.686 35.73 3

ADMM-Net2 0.074 0.589 3.179 2.590 1.05 3

Table 3: classic ADMM vs deep unrolling ADMM in large example.

method loss obj delay fairness load iteration/layers

ADMM 0 -183.355 4.377 187.732 1.00 20000

ADMM-Net1 0.152 -185.756 5.218 190.802 3.344 2

ADMM-Net2 0.249 -164.463 24.378 188.840 1.01 2

ADMM-Net1 0.128 -185.920 4.898 190.818 3.573 3

ADMM-Net2 0.248 -164.400 24.286 188.891 1.01 3
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ADMM-Net2 as Warm-start

ADMM-Net gives a fast approximate solution

If we want to get a precise result, ADMM-Net becomes untrainable

A natural idea is using ADMM-Net as warm-start
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