
Data Selection for Language Models: From the Perspective of
Learning to Optimize

Zhonglin Xie

Beijing International Center for Mathematical Research
Peking University

April 10, 2025

1 / 86

Outline

1 What is Data Selection?

2 Data Selection for Pretraining

3 Learning to Optimize: An Illustration Using Algorithm Unrolling

4 [ICLR 2025 Oral] Data Selection via Optimal Control

5 [ICLR 2025 Spotlight] RegMix: Data Mixture as Regression for Language Model
Pre-training

6 [NeurIPS 2024 Oral] Not All Tokens Are What You Need for Pretraining

2 / 86

What is Data Selection?

▶ Definition: Designing an optimal dataset from raw data under some objective function.

▶ Probabilistic View: Optimal dataset matches the distribution where the model will be
evaluated.

▶ Goals:
▶ Improve model performance.
▶ Reduce cost (dataset size, training time).
▶ Ensure evaluation integrity (remove test contamination).
▶ Reduce bias and toxicity.

▶ Especially important for Large Language Models (LLMs) at various stages
(pretraining, instruction-tuning, alignment).

3 / 86

Data Pipeline for Language Models

DatasetRaw Data Language Model

Learning Stage Pretraining Instruction-tuning Alignment Task-specific Fine-tuning

Selection
Objective

Data
Pipeline

Model Performance Data Efficiency

Evaluation Integrity

Reduce Bias/Toxicity

Selection Efficiency

Model Performance Data Efficiency

Evaluation Integrity

Reduce Bias/Toxicity

Selection Efficiency

Data Selection

In-Context Learning

▶ Utility Function: Determines the value/utility of a data point.
▶ Selection Mechanism: Decides how to use a data point based on its utility.

4 / 86

Taxonomy: Background

▶ Token: Smallest unit (byte, char, subword).

▶ Data Point (x (i)): Ordered collection of tokens (a single sample).

▶ Data Point Characteristics: Measures describing a data point (length, topic,
embedding). Used to determine inclusion/cleaning.

▶ Dataset (D): Collection of data points {x (1), . . . , x (N)}.

▶ Dataset Distribution: Distribution of data points in the data space. Crucial for model
generalization (in-distribution vs. out-of-distribution).

5 / 86

Taxonomy: Unified Conceptual Framework

▶ Goal: Filter and select data points from Draw to create D that maximizes a desired
objective fobj(M) for a modelM.

▶ Formal Definition: D = ϕ(Draw), where ϕ is the data selection function.

▶ Methods can be composed: ϕ = ϕ1 ◦ · · · ◦ ϕn.

▶ Components of Selection Functions ϕj :
▶ Utility Function U(x (i))→ R: Assigns a score representing data point utility (e.g., quality,

relevance, length).
▶ Selection Mechanism: Uses utility score to decide inclusion/repetition (e.g., thresholding,

probabilistic sampling). Requires selection sensitivity (e.g., threshold value).

6 / 86

Taxonomy: Dimensions of Variance (1/2)

Distribution Matching vs. Diversification

▶ Matching: Select data similar to a target
distribution (e.g., high quality, specific
domain, language).
▶ Utility = Similarity to target.
▶ Uses target data statistics or

representations.

▶ Diversification: Prioritize heterogeneity,
remove redundancy.
▶ Utility = Relation to other points

(dissimilarity).
▶ Improves efficiency, reduces

memorization/bias.

Distribution Matching Distribution Diversification

Figure: Conceptual view of Matching vs.
Diversification goals.

7 / 86

Taxonomy: Dimensions of Variance (2/2)

▶ Altering the Dataset vs. Data Point
▶ Dataset: Change frequency of data points (filter, oversample). Map x (i) → N0.
▶ Data Point: Modify content within a data point (e.g., remove HTML tags).

▶ Output Space: Binary vs. Natural Number Selection
▶ Binary (Filtering): Include or remove ({0, 1}).
▶ Natural Number (Mixing): Assign repetition count ({0, 1, 2, ...}). Often used for weighting

sources (e.g., web vs. books).

▶ Training Stage
▶ Goals/methods vary: Pretraining, Instruction-Tuning, Alignment, In-Context Learning,

Task-Specific Fine-Tuning.
▶ Considerations: Target distribution clarity, dataset size, computational budget.

8 / 86

Outline

1 What is Data Selection?

2 Data Selection for Pretraining

3 Learning to Optimize: An Illustration Using Algorithm Unrolling

4 [ICLR 2025 Oral] Data Selection via Optimal Control

5 [ICLR 2025 Spotlight] RegMix: Data Mixture as Regression for Language Model
Pre-training

6 [NeurIPS 2024 Oral] Not All Tokens Are What You Need for Pretraining

9 / 86

Overview of Pretraining Data Selection Methods

Selection Method
Distribution Matching Output Adjust Dataset
vs. Diversification Space vs. Data Point

Language Filtering M {0, 1} D
Heuristic Approaches M N0 D + P
Data Quality M {0, 1} D
Domain-specific M {0, 1} D
Deduplication D {0, 1} D + P
Toxic and Explicit Content M {0, 1} D + P
Multilingual Filtering M + D N0 D + P
Data Mixing M + D N0 D

Table: Taxonomy of pretraining data selection methods along three axes.

10 / 86

Data Selection Pipeline for Pretraining

DeduplicationLanguage
Filtering

Toxic & Explicit
ContentHeuristics Domain

Specific
Data-Mixing

80%

15%

5%

Pretraining
Corpus

עב

Data
Quality

Figure: An overview of the data filtering pipeline for pretraining. Different works employ
different filters, at different stages, and do not necessarily adhere to the order conveyed here.

11 / 86

Common Methodologies in Data Selection

▶ URL-based methods: Filter based on domain
names or specific URL patterns.
▶ Used for language filtering, toxic content filtering.
▶ Simple but effective for certain tasks.

▶ Classifier-based methods: Train models to
identify specific properties.
▶ Used for language detection, quality filtering,

toxicity detection.
▶ Example: fastText for language identification.

▶ Common utility functions:
▶ Heuristic-based (length, repetition, ratios)
▶ Perplexity-based (for quality and domain filtering)
▶ Hash-based (for deduplication)

Learning Stage
Pretraining

Instruction-tuning

Task-specific Fine-tuning

In-Context Learning

Selection Objective

Model
Performance

Data
Efficiency

Evaluation Integrity

Reduce Bias/Toxicity

Selection Efficiency

Alignment

Figure: Data selection: pretraining.
The first training stage of modern
language models. Typically, the most
important selection objectives are model
performance, evaluation integrity, and
selection efficiency.

12 / 86

Data Mixing (1/2)

▶ What is Data Mixing? Optimizing domain weights α ∈ ∆k across k domains to
improve performance.

▶ Why it’s important:
▶ Choice of domain weights significantly impacts downstream accuracy.
▶ Optimal mixing can improve training efficiency and model performance.

▶ Common Baselines:
▶ Heuristic/manual weights (e.g., upweighting books and Wikipedia).
▶ Empirically determined weights using downstream performance.

13 / 86

Data Mixing (2/2)

▶ Principled Approaches:
▶ Offline methods: DoReMi, DoGE - optimize static domain weights.
▶ Online methods: Skill-it, ShearedLLaMA, ODM - adapt weights during training.

▶ Challenges:
▶ Trade-off: increasing one domain density decreases others.
▶ Weight transferability across tokenizers and training scales.
▶ Potential overfitting on smaller domains when scaling to more tokens.

14 / 86

Current Best Practices for Data Selection

▶ General workflow: Start with efficient methods that remove broad quantities, then
apply specialized filters.

▶ Essential steps:
▶ Language filtering (fastText classifier)
▶ Heuristic filtering (length, repetition, format)
▶ Deduplication (URL-based, MinHash, Bloom filters)
▶ Toxic content filtering (blacklists, classifiers)

▶ Domain-specific considerations:
▶ For multilingual models: adjust parameters per language
▶ For domain-targeted models: methods like DSIR

15 / 86

Current Landscape of Datasets For Data Selection Research

▶ Most popular datasets:
▶ C4 (750GB): Oldest, web-crawled only, good baseline for improvements
▶ The Pile (800GB): 28% web scrape, 72% diverse domains, good for data mixing research
▶ RedPajama (1T tokens): Recreation of LLaMA-2 dataset
▶ RedPajama-2 (30T tokens): Largest with precomputed quality signals

▶ Selection research typically uses:
▶ RedPajama: Skill-it, SlimPajama, data mixing laws
▶ The Pile: ODM, DSIR, DoReMi
▶ C4: DsDm and earlier works

16 / 86

Outline

1 What is Data Selection?

2 Data Selection for Pretraining

3 Learning to Optimize: An Illustration Using Algorithm Unrolling

4 [ICLR 2025 Oral] Data Selection via Optimal Control

5 [ICLR 2025 Spotlight] RegMix: Data Mixture as Regression for Language Model
Pre-training

6 [NeurIPS 2024 Oral] Not All Tokens Are What You Need for Pretraining

17 / 86

Algorithm Unrolling (AU)

AU consists of two steps

▶ Pick a classic iteration and unroll it to an Neural Network (NN)

▶ Select a set of NN parameters to learn

LASSO example: assume b = Ax true + noise; recover x true by

x lasso ← minimize
x

1

2
∥Ax − b∥22 + λ∥x∥1

Iterative soft-thresholding algorithm (ISTA):

xk+1 = ηλα

(
xk − αAT

(
Axk − b

))
▶ convergence requires a proper stepsize α or line search

▶ the gradient-descent step reduces 1
2∥Ax − b∥2

▶ the soft-thresholding step ηλα(·) reduces λ∥x∥1
18 / 86

Unrolled ISTA

▶ Introduce scalar θ = λα and matrices W1 = αAT and W2 = I − αATA

▶ Rewrite ISTA as
xk+1 = ηθ

(
W1b +W2x

k
)

▶ Unrolling: introduce θk ,W k
1 ,W

k
2 , k = 0, 1, . . ., as free parameters and re-define

xk+1 = ηθk
(
W k

1 b +W k
2 x

k
)

which resembles a DNN:

▶ Once θk ,W k
1 ,W

k
2 are chosen, the algorithm is defined

19 / 86

Train the Unrolled ISTA

▶ Objective: Find θk ,W k
1 ,W

k
2 for k = 0, 1, . . ., such that the algorithm converges quickly

for LASSO instances with the same matrix A.

▶ Setup and Training:
▶ Fix a random matrix A, generate sparse vectors x truei with varying supports, and compute

bi = Ax truei + noisei . Form the training set D = {(x truei , bi)}.
▶ Fix a small K > 0, and train the parameters {θk ,W k

1 ,W
k
2 }Kk=0 using SGD to minimize:

minimize
{θk ,W k

1 ,W
k
2 }Kk=0

∑
(x∗,b)∈D

∥∥xK (b)− x∗
∥∥2
2
,

where xK (b) is the K -layer output of the neural network.

20 / 86

Performance of the Learned ISTA (LISTA)

After the NN is trained with K = 16, the test performance is shockingly good:

Figure: The trained unrolled ISTA is called Learned ISTA (LISTA)

LISTA works much better than ISTA at any λ and using a theoretical stepsize
21 / 86

Outline

1 What is Data Selection?

2 Data Selection for Pretraining

3 Learning to Optimize: An Illustration Using Algorithm Unrolling

4 [ICLR 2025 Oral] Data Selection via Optimal Control

5 [ICLR 2025 Spotlight] RegMix: Data Mixture as Regression for Language Model
Pre-training

6 [NeurIPS 2024 Oral] Not All Tokens Are What You Need for Pretraining

22 / 86

Data Selection via Optimal Control: Motivation

▶ Motivation: Inspired by learned optimizer literature that focuses on training dynamics

▶ Core Insight: Data selection can be formulated as an Optimal Control problem

▶ Key Idea: Optimize data quality scores γ that minimize LM’s downstream loss during
training
▶ Control variables: Data quality scores γ
▶ State variables: Model parameters θ
▶ Objective function: AUC of the downstream loss J(θ)

▶ Pontryagin’s Maximum Principle (PMP): Provides necessary conditions for optimal
control

23 / 86

Problem Formulation: Optimal Control Framework

Conventional Data Selection
Optimal Data Selection

𝑡0

D
ow

ns
tre

am
 L

os
s

Training Steps Data Quality Scores:

▶ Goal: Find optimal data quality scores γ∗ that minimize:

min
γ

T∑
t=1

J(θt) subject to: θt+1 = θt − η∇L(θt , γ), γ ∈ U

▶ Where: L(θ, γ) =
∑|Dtrn|

n=1 γnl(xn, θ), U denotes the |Dtrn|-dimensional simplex, and J(θ)
represents the downstream loss function.

24 / 86

Connection Between AUC and Scaling Law Constants

Minimizing the Area Under the Curve (AUC) directly improves model scaling properties:

▶ LM Scaling Law: L(t) = C
tc + Lirre, where t > T0

▶ C and c are scaling law constants
▶ Lirre is the irreducible loss (noise in test set)
▶ T0 is the end of warmup stage

▶ Reducible Loss: Lre(t) = C(γ)

tc(γ)

▶ AUC of Reducible Loss:

AUC(γ) =

∫ T

t=T0

C (γ)

tc(γ)
dt =

C (γ)

1− c(γ)
(T 1−c(γ) − T

1−c(γ)
0)

▶ Key Result: Minimizing AUC causes C (γ) to decrease and c(γ) to increase, improving
LM scaling properties

25 / 86

Pontryagin’s Maximum Principle for Data Selection

Theorem (PMP Conditions for Data Selection)

Let γ∗ solve the optimization problem, and θ∗t denote the LM parameters trained with γ∗.
For 0 ≤ t < T , there exists a vector λ∗

t ∈ RN such that:

θ∗t+1 = θ∗t − η∇L(θ∗t , γ∗), θ∗0 = θ0

λ∗
t = λ∗

t+1 +∇J(θ∗t)− η∇2L(θ∗t , γ
∗)λ∗

t+1, λ
∗
T = ∇J(θ∗T)

γ∗ = argmax
γ

|Dtrn|∑
n=1

γn

[
T−1∑
t=0

λ∗
t+1

⊤∇l(xn, θ∗t)

]
, γ ∈ U

▶ λ∗
t defines a “target vector” representing ideal gradient direction

▶ Higher quality scores assigned to data points whose gradients align with the target vector

▶ This forms a complete equation system that can be solved to derive optimal data weights

26 / 86

PDS Framework Overview

Pontryagin’s
Maximum Principle

(Algorithm 1)
Train

Data Scorer

Data Scorer

Inference
& Select Data

Language
Model

Pre-train

Data Quality Scores 𝜸∗Proxy Dataset 𝒟!"#

Large-Scale Corpus 𝒟

Uniform Sample

Selected Corpus 𝒟′

1
2

3

▶ Compute data quality scores on a proxy dataset via PMP-Solver

▶ Train a data scorer model to predict quality scores

▶ Select high-quality data for pre-training LMs

27 / 86

PMP-Solver Algorithm

Algorithm PMP-Solver Algorithm (Height Adjusted)

Require: LM learning rate η, Outer loop learning rate α, Outer
epochs To , Training data Dtrn, Downstream loss J(θ), Train-
ing steps T , Projection function Proj[·], Model initialization
θ0

Ensure: Data quality scores γ∗

1: Initialize γ =
[
γ1, γ2, · · · , γ|Dtrn|

]
←

[
1

|Dtrn| ,
1

|Dtrn| , · · · ,
1

|Dtrn|

]
2: for i = 1 to To do
3: for t = 0, 1, · · · ,T − 1 do ▷ Forward inner loop
4: θt+1 ← θt − η∇L(θt , γ)
5: end for
6: λT ← ∇J(θT)
7: for t = T − 1,T − 2, · · · , 1 do ▷ Reverse inner loop
8: λt ← λt+1 +∇J(θt)− η∇2L(θt , γ)λt+1

9: end for
10: for n = 1, 2, · · · , |Dtrn| do
11: γn ← γn + α

∑T−1
t=0 λ⊤

t+1∇l(xn, θt)
12: end for
13: γ ← Proj [γ]
14: end for
15: return γ

▶ Bi-level
optimization: Outer
loop updates γ while
inner loops compute
θt and λt

▶ Uniform score
initialization followed
by iterative
refinement

▶ “Soft” update
strategy for stability

28 / 86

Computing Target Vectors and Gradient Alignment

▶ Forward inner loop:

θt+1 ← θt − η∇L(θt , γ)

Trains the model with weighted loss
based on current γ scores

▶ Reverse inner loop:

λt ← λt+1 +∇J(θt)− η∇2L(θt , γ)λt+1

Computes the target vectors from future
to current steps

▶ Quality score update:

γn ← γn + α

T−1∑
t=0

λ⊤
t+1∇l(xn, θt)

Increases scores for data points with
gradients aligned to target vectors

29 / 86

Efficient Implementation of PMP-Solver

▶ Computational challenges:
▶ Computing Hessian matrix for ∇2L(θt , γ) is expensive
▶ Storing all model parameters θt for t = 0 to t = T − 1 requires large memory
▶ Running multiple outer epochs with large models is computationally intensive

▶ Practical implementation:

γ∗ =
1

M

M∑
m=1

PMP-Solver(Dtrn = Dprx,T = T prx, θ0 = θ
(m)
0 ,To = 1)

where θ
(m)
0 are checkpoints at different stages: [10K , 20K , 30K , 40K , 50K] steps

▶ Key optimizations:
▶ Small proxy LM with Nprx ≪ N parameters
▶ Fewer training steps T prx ≪ T
▶ Mini-batch SGD with small batch size
▶ Just one outer epoch per checkpoint

30 / 86

Data Scorer: Transferring Quality Scores to Full Dataset

▶ Data scorer objective:

ϕ∗,w∗, b∗ = arg min
ϕ,w ,b

|Dprx|∑
n=1

(w⊤h(xprxn , ϕ) + b − γ∗n)
2

▶ Implementation details:
▶ Fine-tune a small language model (125M parameter Fairseq-Dense model)
▶ Represent each instance by averaging output hidden states: h(x , ϕ)
▶ Train linear head w , b to predict quality scores using MSE loss

▶ Inference on full dataset:
▶ Apply trained scorer to entire pre-training corpus Dtrn

▶ Quality score for each instance: γ(xn) = w∗⊤h(xn, ϕ
∗) + b∗

31 / 86

Final Data Selection Strategy

▶ Gumbel-Top-K sampling for diversity:

Dselect = Top-K{γ(xn)− τ log(− log(un)) | xn ∈ Dtrn, 1 ≤ n ≤ |Dtrn|}

where:
▶ un ∼ Uniform(0, 1) adds randomness
▶ τ = 0.1 controls noise strength
▶ K = r |Dtrn| with selection ratio r = 0.4

▶ Benefits of probabilistic selection:
▶ Ensures diversity in the selected data
▶ Prevents overfitting to specific patterns
▶ Balances exploration and exploitation

32 / 86

Experimental Setup

▶ Data:
▶ Pre-training corpus (Dtrn): CommonCrawl from RedPajama
▶ Downstream loss function (J(·)): LIMA (1,030 diverse instruction-response pairs)
▶ Evaluation: OLMo benchmark tasks and MMLU (zero-shot)

▶ Models: Mistral architecture with 160M, 470M, 1B, and 1.7B parameters

▶ PDS implementation:
▶ Proxy dataset: 160K instances (0.2B tokens) sampled from CommonCrawl
▶ Proxy LM: 160M parameters trained for 50K steps
▶ PMP-Solver: Inner loops with 100 steps, batch size 256, learning rate 0.008
▶ Data scorer: 125M parameter Fairseq-Dense model

▶ Pre-training: 100K steps, batch size 512, max length 1024 (50B tokens)

33 / 86

Baseline Methods

▶ Conventional/RedPajama:
▶ Pre-training LM on 50B tokens uniformly sampled from Dtrn

▶ No data selection or filtering applied

▶ RHO-Loss (Reducible Held-Out Loss):
▶ Selects data with high reducible losses
▶ RHO-Loss(x) = Linit(x)− Lfinal(x)

▶ DSIR (Data Selection using Instance-level Relevance):
▶ Selects data with high n-gram overlap with instances in LIMA
▶ Focuses on content similarity to target distribution

▶ IF-Score (Influence Function Score):
▶ Selects data with high influence scores
▶ IF-Score(x) = ∇θL(x)T · ∇θJ(Dval)
▶ Measures influence through gradient alignment

34 / 86

Detailed OLMo Benchmark Results

Method HS LAMB Wino. OBQA ARC-e ARC-c PIQA SciQ BoolQ Avg.

Model Size = 470M

Conv. 36.7 41.4 52.4 30.4 44.8 25.2 61.0 70.6 60.4 47.0
RHO-Loss 36.6 42.4 53.0 29.4 43.7 25.2 60.4 72.8 59.8 47.0
DSIR 36.4 42.6 51.7 29.8 46.0 24.7 61.0 72.0 55.8 46.7
IF-Score 36.6 41.8 53.4 29.6 44.7 25.1 60.8 68.8 58.7 46.6
PDS 37.9 44.6 52.3 29.8 46.5 25.8 61.8 73.8 61.4 48.2

Model Size = 1B

Conv. 39.9 47.6 52.4 30.6 49.3 26.4 63.1 73.7 60.9 49.3
RHO-Loss 39.8 47.0 53.0 30.8 48.0 26.4 62.9 71.1 61.0 48.9
DSIR 40.8 47.8 53.0 31.2 49.8 26.8 62.7 76.6 58.0 49.6
IF-Score 39.4 47.0 52.6 28.6 49.4 26.4 63.5 74.0 60.5 49.0
PDS 42.1 48.8 54.0 33.4 51.3 28.0 64.1 78.5 58.7 51.0

Table: Accuracy on OLMo benchmark tasks. PDS consistently outperforms baseline methods.

35 / 86

MMLU Performance and Language Modeling Results

Size Method 0-shot PPL

470M

Conv. 27.6 34.8
RHO-Loss 28.4 33.0
DSIR 28.0 34.0
IF-Score 28.4 31.1
PDS 28.9 27.1

1B

Conv. 29.7 26.1
RHO-Loss 30.2 24.9
DSIR 30.0 25.3
IF-Score 30.7 23.6
PDS 31.4 20.5

Table: MMLU results showing 0-shot
accuracy and perplexity (PPL) on
ground truth answers.

▶ MMLU improvements:
▶ PDS shows +1.3% gain on 470M model
▶ PDS shows +1.7% gain on 1B model
▶ Lower perplexity indicates higher confidence on

correct answers

▶ Language modeling quality:
▶ PDS achieves significant reduction in perplexity
▶ 1B model: 21% reduction (26.1 → 20.5)
▶ Indicates better capture of language patterns

36 / 86

Language Modeling Performance on DCLM

160M 470M 1B 1.7B
Model Size

44

46

48

50

52

Av
er

ag
e

Ac
cu

ra
cy

 (%
) Redpajama

PDS (Ours)

Figure: Test losses on DCLM corpus for
models of different sizes, showing
consistent improvements with PDS
across all model scales.

▶ DCLM dataset:
▶ High-quality corpus curated with complex

pipelines
▶ Verified for diversity and knowledge coverage
▶ Challenging benchmark for general language

modeling

▶ Consistent improvements:
▶ PDS shows lower loss across all model sizes
▶ 160M: 9% reduction
▶ 470M: 22% reduction
▶ 1B: 21% reduction
▶ 1.7B: 27% reduction

▶ PDS provides principled alternative to complex
data curation pipelines

37 / 86

Extrapolating PDS Benefits to Larger Models

N D Conv. PDS

GPT-3 175B 300B 2.882 2.872
Llama 6.7B 1.0T 2.942 2.896
Llama 2 70B 2.0T 2.877 2.855
Llama 3.1 405B 15T 2.851 2.838

Table: Test loss extrapolation using
Scaling Laws. We predict loss when
model size N and trained tokens D
match those of leading models.

▶ Scaling law form:

L(N,D) = E +
A

Nα
+

B

Dβ

▶ PDS improves scaling constants:
▶ Higher α (0.397 → 0.518): Better parameter

scaling
▶ Lower B (7.5× 105 → 1.8× 105): Better data

utilization
▶ Slightly lower β (0.651 → 0.585): Better starting

point but slower data scaling

▶ Practical implications:
▶ Benefits consistent across all model scales
▶ Extrapolates to largest LLMs in production today
▶ Helps mitigate ”running out of data” challenge
▶ Same test loss with less computation

38 / 86

Computational Efficiency and Training Acceleration

2.0x

Figure: PDS achieves same performance
with 2x fewer training steps, showing
significant computational savings.

▶ Training acceleration:
▶ 2x faster convergence in terms of training FLOPs
▶ Consistent acceleration across model sizes
▶ Same final performance with half the compute

▶ PDS computational overhead:
▶ Only 1/9 of the computational cost of

pre-training
▶ Proxy γ-solver: 4.9× 1019 FLOPs
▶ Data scorer: 6.3× 1018 FLOPs
▶ 1.7B pre-training: 5.1× 1020 FLOPs

▶ Benefits:
▶ One-time upfront cost for data selection
▶ Selected corpus reusable for multiple models
▶ Seamless integration with existing pipelines

39 / 86

Data-Constrained Settings: When Data is Limited

1 Ep.

2 Ep.

1 Ep.

8 Ep.

1 Ep.

1 Ep.

4 Ep.

Figure: Test losses on DCLM corpus in
the data-constrained setting with
different selection ratios and training
epochs.

▶ Experimental setup:
▶ Restricting Dtrn to 50B tokens
▶ Apply PDS with selection ratios

r ∈ [0.125, 0.25, 0.5]
▶ Training for [8, 4, 2] epochs respectively

▶ Key findings:
▶ Selecting 1/4 data with PDS and training for 4

epochs achieves lowest test loss
▶ Consistent with findings from data-constrained

LM literature
▶ PDS reduces data requirements by 1.8x
▶ Conventional training would need additional 42B

tokens to match PDS performance

▶ Implication: Critical as high-quality web data
becomes exhausted

40 / 86

When in Training is Data Quality Most Important?

Method Corr. Acc.

IF-Score 0.32 43.0
PDS (T prx = 1) 0.54 44.6
PDS (50K-100K) 0.48 43.4

PDS (10K-50K) 0.52 45.0

Table: Impact of training stages and
trajectory length on PDS performance.
Correlation with exact solution and
downstream accuracy.

▶ Early vs. late training stages:
▶ Early stages (10K-50K steps): +1.6% accuracy
▶ Late stages (50K-100K): Only +0.2% accuracy
▶ Early training involves critical parameter space

exploration

▶ Trajectory length importance:
▶ Single-step gradients (T prx = 1): Less effective
▶ Long-range dynamics (T prx = 100): Captures

crucial learning trajectory
▶ Multiple checkpoints capture different

optimization phases

▶ Implication: Focus data quality efforts on early
training for maximum benefit

41 / 86

Efficient Implementation of PMP Solver

0 1000 2000 3000 4000 5000
Training Steps t

7.0

7.5

8.0

8.5

J(
t)

Conventional
PDS (Efficient, ~1016 FLOPs)
PDS (Exact, ~1018 FLOPs)

Figure: Comparison between exact and
efficient PMP implementations in terms
of performance vs. computational cost.

▶ Computational challenges:
▶ Exact PMP solution computationally expensive
▶ Must balance solution quality with practical

overhead
▶ Need efficient approximation for production use

▶ Efficient implementation:
▶ Single outer epoch instead of convergence
▶ Small proxy LM instead of full model
▶ Limited training trajectory (100 steps)
▶ Selected checkpoints for key training stages

▶ Results:
▶ Preserves 92% of exact solution effectiveness
▶ Reduces computation by ∼ 95%
▶ Makes PDS practical for large-scale applications

42 / 86

Summary of Experimental Findings

▶ Performance improvements:
▶ Consistent +1-2% accuracy across model sizes and tasks
▶ Average gain of 1.8% (470M) and 1.7% (1B) on OLMo tasks
▶ Stronger improvement on MMLU (+1.3% for 470M, +1.7% for 1B)
▶ 21-27% reduction in perplexity on high-quality text

▶ Efficiency gains:
▶ 2x faster convergence in training
▶ 1.8x reduction in data requirements
▶ Minimal overhead (1/9 of pre-training cost)
▶ Benefits extrapolate to largest models

▶ Critical insights:
▶ Early training stages most impacted by data quality
▶ Long-range dynamics crucial for effective selection
▶ Optimal strategy: select 1/4 of data, train for 4 epochs
▶ Efficient implementation preserves most benefits

43 / 86

Outline

1 What is Data Selection?

2 Data Selection for Pretraining

3 Learning to Optimize: An Illustration Using Algorithm Unrolling

4 [ICLR 2025 Oral] Data Selection via Optimal Control

5 [ICLR 2025 Spotlight] RegMix: Data Mixture as Regression for Language Model
Pre-training

6 [NeurIPS 2024 Oral] Not All Tokens Are What You Need for Pretraining

44 / 86

RegMix: Motivation and Key Idea

▶ Challenge: Data mixture significantly impacts LLM performance, but determining
optimal mixtures is difficult

▶ Key Insight: Rank invariance of data mixtures across model scales
▶ The ranking of data mixtures by performance holds across model sizes
▶ Small-scale models can predict effective mixtures for large-scale models

▶ RegMix Approach:
▶ Formulate data mixture selection as a regression task
▶ Train many small models on diverse data mixtures
▶ Fit regression model to predict performance of unseen mixtures
▶ Use best predicted mixture for large-scale model training

▶ Advantage: 10× less computation than prior methods like DoReMi

45 / 86

Key Insight: Small to Large Model Transfer

Hypothesis: Rank
Invariance of Data Mixtures

SmallModels

Few Tokens

LargeModels

More Tokens

Best Data Mixture

Figure: Left: The rank invariance hypothesis across model scales. Right: RegMix successfully
identifies the best data mixture (red star) for 1B parameter models using only 1M parameter proxy
models.

46 / 86

RegMix: Methodology Overview

Hacker News Github Philpapers

9.5% 35.9% 54.6%

87.7% 12.0% 0.3%

24.4% 1.4% 74.2%

step

Target

5.46

5.57

6.07
step

step… …

Regression Model

Linear
Model

Tree
Model

Hacker News Github Philpapers

22.8% 67.0% 10.2%

Prediction (Lowest)

5.34

Predicted Best Target

Simulated Best Data Mixture

Train small-scale proxy models1

Simulate new data mixtures and
predict Target
3

Train a large-scale model on the best mixture4

Fit a regression model
using data mixture as source
2

47 / 86

RegMix: Training Small-Scale Proxy Models

▶ Goal: Sample diverse data mixtures to cover the solution space efficiently

▶ Approach: Use Dirichlet distribution based on token distribution
▶ Sample weights from 0% to 100% for each domain
▶ Ensure mixtures reflect realistic token availability
▶ Apply multipliers (0.1 to 5.0) to create diverse sparsity patterns

▶ Implementation:
▶ Train 512 models with 1M parameters on 1B tokens each
▶ Evaluate models on downstream tasks or domain losses
▶ Collect data mixture weights and corresponding performance

48 / 86

RegMix: Regression Models and Data Domains

▶ Regression models:
▶ Linear regression with L2 regularization
▶ LightGBM gradient-boosting algorithm

▶ Input: Domain weights of data mixture

▶ Output: Target performance metric

Table: Key domains in the Pile dataset used for
experiments

Component Size (GiB)

Pile-CC 227.12
PubMed Central 180.55
ArXiv 112.42
GitHub 95.16
FreeLaw 76.73
Stack Exchange 64.39
Wikipedia (en) 19.13
HackerNews 7.80

49 / 86

RegMix: Simulation and Prediction for Large-Scale Training

▶ Simulation process:
▶ Generate millions of potential data mixtures
▶ Apply trained regression model to predict performance
▶ Identify mixtures with best predicted performance
▶ For robust results, average top 100 predicted mixtures

▶ Computational efficiency:
▶ Simulation of 1,000,000 data mixtures takes ¡10 CPU seconds
▶ Total RegMix compute is 2% of training one 1B parameter model
▶ Parallelizable across many small models rather than sequential training

▶ Large-scale model training:
▶ Apply predicted optimal mixture to models with 1B-7B parameters
▶ Training for 25B-100B tokens (25-100× more than proxy models)
▶ Model size up to 1000× larger than proxy models

50 / 86

Experimental Results: Performance on Downstream Tasks

25B 50B 75B 100B

54

56

58

60

62

P
er
fo
rm

an
ce

(%
)

Winogrande

RegMix
Human

25B 50B 75B 100B

45

50

55

60

65
QQP

RegMix
Human

25B 50B 75B 100B

32

34

36

38
RACE

RegMix
Human

25B 50B 75B 100B

30

32

34

36

38
OpenBookQA

RegMix
Human

25B 50B 75B 100B

40

42

44

46

P
er
fo
rm

an
ce

(%
)

Social IQA

RegMix
Human

25B 50B 75B 100B

45

50

55

60

65
HellaSwag

RegMix
Human

25B 50B 75B 100B

35

40

45

50

Lambada

RegMix
Human

25B 50B 75B 100B

68

70

72

74

76
PiQA

RegMix
Human

25B 50B 75B 100B

68

72

76

80

84

P
er
fo
rm

an
ce

(%
)

COPA

RegMix
Human

25B 50B 75B 100B

75

80

85

90

95
SciQ

RegMix
Human

25B 50B 75B 100B

45

50

55

60

65
MultiRC

RegMix
Human

25B 50B 75B 100B

56

60

64

68
ARC-Easy

RegMix
Human

51 / 86

Key Findings from RegMix Experiments

▶ Data mixture impact:
▶ Up to 14.6% difference in task performance from mixture choice alone
▶ Mixture effects persist across model scales (1M to 7B parameters)

▶ Domain importance:
▶ Web corpora (e.g., CommonCrawl) show strongest positive correlation with performance
▶ Wikipedia is less impactful than commonly believed
▶ Complex interactions between domains that defy intuition

▶ Scaling behavior:
▶ RegMix consistently outperforms human selection across all scales
▶ Matches or exceeds DoReMi with 10× less computation
▶ Benefits transcend scaling laws - good mixtures remain beneficial at scale

52 / 86

Practical Implications

▶ Efficient resource utilization:
▶ Small models can effectively predict optimal mixtures for large models
▶ Parallelizable approach fits well with modern compute infrastructure
▶ Total compute cost is just 2% of final model training

▶ Better than human intuition:
▶ Automatically discovers non-obvious domain relationships
▶ Consistently outperforms mixtures selected by human experts
▶ Takes into account complex interactions between domains

▶ Practical deployment:
▶ Can be integrated into existing LLM training pipelines
▶ Addresses the challenge of optimizing for massive datasets (15T+ tokens)
▶ Facilitates principled domain selection as data sources continue to expand

53 / 86

Evaluating RegMix: Regression Prediction

▶ Goal: Evaluate RegMix’s ability to predict effects of unseen data mixtures

▶ Setup:
▶ Datasets: 17 copyright-free domains from the Pile dataset
▶ Models: Linear and LightGBM regression models (target: Pile-CC validation loss)
▶ Training: Fit using artifacts from 512 × 1M parameter models (1B tokens)
▶ Evaluation: Test on 256 × unseen mixtures for small models (1M, 60M) and 64 × unseen

mixtures for 1B models

▶ Metrics:
▶ Spearman Rank Correlation (ρ) - tests rank preservation
▶ Mean Squared Error (MSE) - measures prediction accuracy

54 / 86

Regression Performance Across Model Scales

Test On 1M 60M 1B

Method ρ (↑) MSE (↓) ρ (↑) ρ (↑)

Linear 90.08 0.13 89.26 88.01
LightGBM 98.45 0.04 98.64 97.12

Table: Regression performance on unseen mixtures across model sizes. 1M models trained with 1B
tokens achieve 97.12% correlation on mixtures of 1B models with 25B tokens, confirming rank
invariance.

55 / 86

Optimizing Small-Scale Training: Models vs. Tokens

0 0.2 0.4 0.6 0.8 1
80

85

90

95

100

Training Tokens (B)

L
in
ea
r
ρ
(%

)

0 0.2 0.4 0.6 0.8 1
80

85

90

95

100

Training Tokens (B)

L
ig
h
tG

B
M

ρ
(%

)

512
128
64

Figure: The plot of Spearman Rank Correlation ρ between the predicted ranks and true ranks of
Linear regression (Left) and LightGBM regression (Right) across different training tokens and
different number of proxy models. As shown, increasing the number of proxy models significantly
boosts ρ, while adding more training tokens has diminishing returns.

56 / 86

Impact of Data Mixture on Performance

Benchmark Worst Model Best Model ∆

Social IQA 32.4 33.9 1.5
HellaSwag 33.0 43.4 10.4
PiQA 60.2 69.0 8.8
OpenBookQA 25.8 31.2 5.4
Lambada 18.9 33.5 14.6
SciQ 76.7 82.9 6.2
ARC Easy 44.9 52.2 7.3
COPA 61.5 70.5 9.0
RACE 27.9 32.5 4.6
LogiQA 23.2 27.7 4.5
QQP 48.0 59.7 11.7
WinoGrande 50.3 53.2 2.9
MultiRC 47.6 55.7 8.1

Average 43.7 47.9 4.2

Table: Performance comparison of worst vs. best data mixtures.

57 / 86

Domain Importance for Downstream Tasks

H
el

la
S

w
ag

P
iQ

A

L
am

ba
da

A
R

C
 E

as
y

R
A

C
E

O
pe

nB
oo

kQ
A

C
O

PA

S
ci

Q

Q
Q

P

W
in

oG
ra

nd
e

S
oc

ia
l I

Q
A

L
og

iQ
A

M
ul

ti
R

C

ArXiv

FreeLaw

PubMed Central

Wikipedia (en)

Github

Stack Exchange

Pile-CCV
al

id
at

io
n

L
os

s

Downstream Performance

-1

0

1

Figure: Correlation between validation loss by domains of the Pile and downstream performance.
Pile-CC (web data) shows strongest correlation with most downstream tasks.

58 / 86

Web Domain Correlation with Tasks

H
el

la
S

w
ag

P
iQ

A

L
am

ba
da

A
R

C
 E

as
y

R
A

C
E

O
pe

nB
oo

kQ
A

C
O

PA

S
ci

Q

Q
Q

P

W
in

oG
ra

nd
e

S
oc

ia
l I

Q
A

L
og

iQ
A

M
ul

ti
R

C

link.springer.com

mail-archives.apache.org

patents.google.com

www.youtube.com

www.latimes.com

www.ign.com

itunes.apple.comV
al

id
at

io
n

L
os

s

Downstream Performance

-1

0

1

Figure: Correlation between validation loss by URL domain within Pile-CC and downstream
performance. Most web domains (e.g., www.ign.com shown here) mirror the correlation pattern of
Pile-CC.

59 / 86

RegMix vs. Other Data Selection Methods

Benchmark Human DoReMi PPL ODM Pile-CC RegMix

Social IQA 33.6 33.4 33.3 33.7 33.2 33.8
HellaSwag 37.4 43.4 43.1 37.2 44.1 44.2
PiQA 65.0 68.3 68.5 64.4 69.2 69.3
OpenBookQA 28.2 30.3 30.3 30.0 31.1 30.3
Lambada 29.8 32.1 35.4 29.6 33.2 34.2
SciQ 80.1 81.6 78.6 79.8 81.8 82.8
ARC Easy 49.4 50.6 50.5 47.9 51.8 51.7
ARC Challenge 26.3 26.1 25.9 25.6 26.7 25.7
COPA 66.7 68.5 69.2 68.2 65.8 70.2
RACE 29.0 31.3 31.5 29.7 31.8 31.3
LogiQA 25.5 26.4 27.5 25.6 27.6 25.8
QQP 52.4 56.6 50.0 53.1 57.0 58.3
WinoGrande 53.1 52.2 52.8 51.8 52.1 53.1
MultiRC 54.3 53.8 50.4 53.3 50.3 51.7

Est. FLOPs 0 3.7e19 1.8e19 0 0 3.5e18
Average 45.1 46.8 46.2 45.0 46.8 47.3
Best On 2 / 14 0 / 14 1 / 14 0 / 14 5 / 14 7 / 14

Table: RegMix achieves best average performance and wins on 7/14 tasks with only 10% of DoReMi’s
compute.

60 / 86

Out-of-Distribution Effectiveness

1 5 9 13 17 21 25
2.75

3.00

3.25

3.50

3.75

4.00

Training Tokens (B)

V
al
id
at
io
n

L
os
s

1 5 9 13 17 21 25
3.00

3.25

3.50

3.75

4.00

4.25

4.50

Training Tokens (B)

V
al
id
at
io
n

L
os
s

Human
DoReMi
RegMix

Figure: Left: The validation loss on Pile-CC of different methods with Pile-CC in the pre-training
corpus. Right: The validation loss on Pile-CC excluding Pile-CC in the pre-training.

61 / 86

Code Domain Interaction Example

as
se

m
bl

y
c c-

sh
ar

p
co

m
m

on
-l

is
p

cp
p

cs
s

da
rt

fo
rt

ra
n

gi
t-

co
m

m
it

s
gi

th
ub

-i
ss

ue
s

go ha
sk

el
l

ht
m

l
ja

va
ja

va
sc

ri
pt

js
on

ju
li

a
ju

py
te

r-
sc

ri
pt

s
ko

tl
in

lu
a

m
ak

ef
il

e
m

ar
kd

ow
n

m
at

he
m

at
ic

a
pa

sc
al

pe
rl

ph
p

po
w

er
sh

el
l

py
th

on
re

st
ru

ct
ur

ed
te

xt
ru

by
ru

st
sc

al
a

sh
el

l
sq

l
te

x
ty

pe
sc

ri
pt

vi
su

al
-b

as
ic

ya
m

l

c
c-sharp

common-lisp
cpp
css
go

haskell
java

javascript
jupyter-scripts

kotlin
lua

python

V
al

id
at

io
n

L
os

s

Domain Weight

-1

0

1

Figure: Correlations between validation losses and training domain weights for code datasets, showing
complex relationships difficult for humans to intuit.

62 / 86

Scaling to 100 Domains

▶ Challenge: Clustering web content into meaningful domain representations

▶ Approach: Define domains by base URLs from FineWeb dataset

▶ Examples: articles.latimes.com, blogs.wsj.com, en.wikipedia.org, etc.

▶ Methodology:
▶ Train 1,000 small-scale models (1M parameters) across different mixtures
▶ Fit regression model to predict optimal data mixture
▶ Evaluate on models with 1M and 60M parameters

Test On 1M 60M

Method ρ (↑) MSE (↓) ρ (↑)

Linear 90.33 0.12 88.64
LightGBM 99.53 0.02 98.80

Table: RegMix extends effectively to 100 domains with high rank correlation.

63 / 86

Performance on Downstream Tasks on 7B Parameter Models

25B 50B 75B 100B

54

56

58

60

62

P
er
fo
rm

an
ce

(%
)

Winogrande

RegMix
Human

25B 50B 75B 100B

45

50

55

60

65
QQP

RegMix
Human

25B 50B 75B 100B

32

34

36

38
RACE

RegMix
Human

25B 50B 75B 100B

30

32

34

36

38
OpenBookQA

RegMix
Human

25B 50B 75B 100B

40

42

44

46

P
er
fo
rm

an
ce

(%
)

Social IQA

RegMix
Human

25B 50B 75B 100B

45

50

55

60

65
HellaSwag

RegMix
Human

25B 50B 75B 100B

35

40

45

50

Lambada

RegMix
Human

25B 50B 75B 100B

68

70

72

74

76
PiQA

RegMix
Human

25B 50B 75B 100B

68

72

76

80

84

P
er
fo
rm

an
ce

(%
)

COPA

RegMix
Human

25B 50B 75B 100B

75

80

85

90

95
SciQ

RegMix
Human

25B 50B 75B 100B

45

50

55

60

65
MultiRC

RegMix
Human

25B 50B 75B 100B

56

60

64

68
ARC-Easy

RegMix
Human

64 / 86

Outline

1 What is Data Selection?

2 Data Selection for Pretraining

3 Learning to Optimize: An Illustration Using Algorithm Unrolling

4 [ICLR 2025 Oral] Data Selection via Optimal Control

5 [ICLR 2025 Spotlight] RegMix: Data Mixture as Regression for Language Model
Pre-training

6 [NeurIPS 2024 Oral] Not All Tokens Are What You Need for Pretraining

65 / 86

Not All Tokens: Overview

▶ Key Insight: Token-level training dynamics reveal not all tokens are equally useful
▶ Solution: Selective Language Modeling (SLM) to focus on valuable tokens

0 5 10 15
Tokens (B)

5

10

15

20

M
at

h
Ac

c
(%

)

16.3% better

10x faster

Avg Few-shot Acc on 1B LMs

DeepSeekMath-1B (150B Tokens)
Rho-1-1B
Baseline

0 5 10 15
Tokens (B)

20

25

30

35

40

45

50

16.4% better

5x faster

Avg Few-shot Acc on 7B LMs

DeepSeekMath-7B (500B Tokens)
Rho-1-7B
Baseline

Figure: SLM improves accuracy on GSM8k and MATH.

66 / 86

Token-Level Training Dynamics

▶ Many tokens exhibit persistent fluctuations and resist convergence

0 5 10 15
Trained Tokens(B)

0

1

2

3

4

Lo
ss

(a) Loss for different token types

H H (11%)
L H (12%)
H L (26%)
L L (51%)

0 5 10 15
Trained Tokens(B)

0.0

0.1

0.2

0.3

Lo
ss

(b) Example L L tokens
L L Token 1
L L Token 2
L L Token 3

0 5 10 15
Trained Tokens(B)

1.5

2.0

2.5

3.0

3.5

Lo
ss

(c) Example H H tokens
H H Token 1
H H Token 2
H H Token 3

Figure: Training dynamics of four token categories during pretraining. (a) Loss of H→H, L→H, H→L,
and L→L tokens. (b) and (c) show cases of fluctuating tokens’ loss in L→L and H→H.

67 / 86

Selective Language Modeling (SLM): Pipeline

Step 1

Train a
reference
model on

high-quality
text.

Reference
Model

High-quality
Corpus

Pretraining
Corpus

Step 2

Calculate
each token’s

ppl in the
pretraining

corpus. Language
Model

Step 3

Train an
LLM with

loss focused
on high-score

tokens.

Figure: The pipeline of Selective Language Modeling (SLM): (1) Train a reference model on
high-quality data. (2) Score each token’s loss using the reference model. (3) Selectively train on
tokens with higher scores.

68 / 86

Selective Language Modeling: Reference Model

▶ Step 1: Train a reference model (RM) on curated high-quality dataset

▶ Step 2: Compute reference loss for each token in the pretraining corpus

LRM(xi) = − logP(xi |x<i)

▶ This establishes the baseline for token selection

69 / 86

Selective Language Modeling: Token Selection

▶ Traditional CLM uses cross-entropy loss on all tokens:

LCLM(θ) = − 1

N

N∑
i=1

logP(xi |x<i ; θ)

▶ SLM focuses on tokens with high excess loss compared to reference model:

L∆(xi) = Lθ(xi)− LRM(xi)

LSLM(θ) = − 1

N ∗ k%

N∑
i=1

Ik%(xi) · logP(xi |x<i ; θ)

▶ Token selection ratio k% determines proportion of tokens to include

▶ Easy to implement by ranking tokens in a batch by excess loss

70 / 86

Key Results

▶ Both 1B and 7B models trained with SLM outperform CLM baselines by 16%+ on
GSM8k and MATH

▶ SLM reaches baseline accuracy up to 10x faster

▶ ρ-7B matches DeepSeekMath-7B using only 15B tokens vs 500B tokens

▶ After fine-tuning, ρ-1B achieves 40.6% on MATH (first 1B LM to exceed 40%)

▶ ρ-7B achieves 51.8% on MATH after fine-tuning

▶ In general continual pretraining, SLM improves Tinyllama-1B by 6.8% across 15
benchmarks

71 / 86

Experiment Overview

▶ Mathematical domain experiments
▶ Continual pretraining on OpenWebMath (14B tokens)
▶ Few-shot CoT reasoning evaluation
▶ Tool-integrated reasoning evaluation via fine-tuning

▶ General domain experiments
▶ Continual pretraining on 80B tokens (SlimPajama, StarCoderData, OpenWebMath)
▶ Evaluation across 15 benchmarks

▶ Self-reference experiments and ablation studies

72 / 86

Experimental Setup: Reference Models

▶ Mathematical reference model
▶ 0.5B high-quality math tokens
▶ Sources: GPT synthetic data, manually curated datasets
▶ Trained for 3 epochs

▶ General reference model
▶ 1.9B tokens from open-source datasets
▶ Sources: Tulu-v2, OpenHermes-2.5
▶ Trained for 3 epochs

▶ Learning rates: 5e-5 (1B models), 1e-5 (7B models)

▶ Sequence lengths: 2048 (1B models), 4096 (7B models)

73 / 86

Experimental Setup: Training Details

▶ Math pretraining models
▶ Base models: Tinyllama-1.1B, Mistral-7B
▶ Learning rates: 8e-5 (1.1B), 2e-5 (7B)
▶ Hardware: 32 × H100 80G GPUs
▶ Training time: 3.5h (15B tokens, 1.1B model), 18h (15B tokens, 7B model)

▶ General domain pretraining
▶ Learning rate: 1e-4 for Tinyllama-1.1B
▶ 80B tokens in 19 hours

▶ Batch size: 1M tokens (both domains)

▶ Token selection ratio: 60% (1.1B model), 70% (7B model)

74 / 86

Math Pretraining Results: Few-shot CoT

▶ SLM outperforms continual pretraining baselines
▶ 16.5% average improvement on 1B models
▶ 10.4% average improvement on 7B models

▶ Multiple epochs on OpenWebMath increases accuracy to 40.9%

▶ ρ-7B (15B tokens) matches DeepSeekMath-7B (500B tokens)

Model GSM8k MATH Avg Tokens
Tinyllama-CT 15.4% 4.8% 10.1% 15B
ρ-Math-1B 32.0% 20.6% 26.3% 15B
Mistral-CT 42.5% 26.3% 34.4% 15B
ρ-Math-7B 53.7% 35.4% 44.6% 15B

Table: Few-shot CoT results (simplified)

75 / 86

Math Pretraining Results: Tool-Integrated Reasoning

▶ Fine-tuned on 69k ToRA corpus
▶ 16k GPT-4-generated tool-integrated reasoning trajectories
▶ 53k answer-augmented samples using LLaMA

▶ State-of-the-art results
▶ ρ-1B: 40.6% on MATH (first 1B model exceeding 40%)
▶ ρ-7B: 51.8% on MATH

▶ Strong generalization to unseen tasks
▶ 6.2% average improvement on ρ-Math-1B
▶ 2.7% average improvement on ρ-Math-7B

76 / 86

General Pretraining Results

MMLU BBH MATH GSM8k
MBPP(p@1)

MBPP(p@10)
HumEval(p@1)

HumEval(p@10)
0

10

20

30

40

M
et

ric
s (

%
)

+11.3
+3.9

+5.0

+28.2

+6.5

+7.8

+6.9
+10.6

Performance of General Pretrained Base Model

AGIEval ARC-C ARC-E BoolQ PIQA
HellaSwag

WinoGrande OBQA TydiQA
20

30

40

50

60

70

80

M
et

ric
s (

%
)

+1.1 +5.0

+8.6

+11.3 +0.9

+1.4 +0.2

+3.4
+8.9

Tinyllama
Tinyllama-CT
Rho-1-1B

Figure: General pretraining results across 15 benchmarks

77 / 86

Self-Reference Results

▶ SLM can work without additional high-quality data

▶ Reference model trained only on OpenWebMath corpus
▶ Two scoring functions explored:

▶ Reference model loss (LRM)
▶ Information entropy of next token (HRM)

▶ Key findings:
▶ OWM-trained reference model improved performance by +2.4%
▶ Information entropy scoring had similar improvement
▶ Intersection of both scoring methods: +3.3% with 40% fewer tokens
▶ PPile training with OWM reference: +1.8% with 30% fewer tokens

78 / 86

Loss Dynamics Analysis

▶ SLM shows greater loss reduction on selected tokens
▶ Selected-token pretraining substantially lowers downstream loss
▶ Traditional pretraining has less pronounced effect on downstream loss

0 1 2 3 4
Tokens (B)

0.98

1.02

1.06

1.10

Lo
ss

(a) Selected Token Loss
Baseline
Rho-1

0 1 2 3 4
Tokens (B)

0.85

0.90

0.95

1.00

1.05

1.10

Lo
ss

(b) Downstream Token Loss
Baseline
Rho-1

0 1 2 3 4
Tokens (B)

2.5

2.9

3.3

3.7

4.1

Lo
ss

(c) Unselected Token Loss
Baseline
Rho-1

Figure: Loss dynamics during pretraining: (a,c) selected/unselected tokens, (b) downstream task

79 / 86

Loss of selected tokens correlates with downstream task performance

▶ Selected tokens positively impact performance
▶ Unselected tokens have negative impact
▶ Reducing loss across all tokens is not necessary for improved performance

0.860.890.920.950.98
Loss

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ac
cu

ra
cy

(%
)

(a) Accuracy vs. Selected Tokens' Loss
Selected Tokens at 2B
Selected Tokens at 5B
Selected Tokens at 8B
Selected Tokens at 11B
Selected Tokens at 14B

3.503.543.583.623.66
Loss

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ac
cu

ra
cy

(%
)

(b) Accuracy vs. Unselected Tokens' Loss

Unselected Tokens at 2B
Unselected Tokens at 5B
Unselected Tokens at 8B
Unselected Tokens at 11B
Unselected Tokens at 14B

Figure: Relationship between token loss and downstream task performance

80 / 86

Token Selection Analysis

2 5 8 11 14
Tokens(B)

2.35

2.45

2.55

2.65

PP
L

PPL of Tokens Selected by Different CKPT
Selected Tokens at 2B
Selected Tokens at 5B
Selected Tokens at 8B
Selected Tokens at 11B
Selected Tokens at 14B

40 50 60 70 80 90 100
Token Select Ratio (%)

0

5

10

15

20

Ac
cu

ra
cy

 (%
)

Accuracy vs. Select Ratio
GSM8K
Math

▶ Majority of selected tokens are closely related to mathematics

▶ Tokens selected by later checkpoints have:
▶ Higher perplexity in later training stages
▶ Lower perplexity in earlier stages

▶ Optimal token selection ratio: 60% of original tokens

81 / 86

Summary of Experimental Findings

▶ SLM significantly outperforms CLM baselines across domains

▶ Requires far fewer tokens to reach similar performance levels

▶ Self-reference approach enables training without external data

▶ Selected tokens show strong correlation with downstream performance

▶ Mechanisms explained through loss dynamics and token selection analysis

▶ Optimal token selection ratio around 60-70%

82 / 86

References

▶ (TMLR 07/2024) Data Selection Survey: [1]

▶ (ICLR 2025 Oral) Data Selection via Optimal Control: [3]

▶ (ICLR 2025 Spotlight) RegMix: [5]

▶ (ICML 2024 Poster) DOGE: [2]

▶ (NeurIPS 2024 Oral) Not All Tokens: [4]

▶ (NeurIPS 2023 Spotlight) DoReMi: [6]

83 / 86

References I

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi
Wang, Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel,
Shiyu Chang, Tatsunori Hashimoto, and William Yang Wang.
A survey on data selection for language models.
Transactions on Machine Learning Research, 2024.
Survey Certification.

Simin Fan, Matteo Pagliardini, and Martin Jaggi.
DOGE: Domain reweighting with generalization estimation.
In Forty-first International Conference on Machine Learning, 2024.

Yuxian Gu, Li Dong, Hongning Wang, Yaru Hao, Qingxiu Dong, Furu Wei, and Minlie
Huang.
Data selection via optimal control for language models.
In The Thirteenth International Conference on Learning Representations, 2025.

84 / 86

References II

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, yelong shen, Ruochen Xu, Chen Lin,
Yujiu Yang, Jian Jiao, Nan Duan, and Weizhu Chen.
Not all tokens are what you need for pretraining.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu
Pang, Jing Jiang, and Min Lin.
Regmix: Data mixture as regression for language model pre-training.
In The Thirteenth International Conference on Learning Representations, 2025.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy
Liang, Quoc V Le, Tengyu Ma, and Adams Wei Yu.
Doremi: Optimizing data mixtures speeds up language model pretraining.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

85 / 86

Many Thanks For Your Attention!

86 / 86

	What is Data Selection?
	Data Selection for Pretraining
	Learning to Optimize: An Illustration Using Algorithm Unrolling
	[ICLR 2025 Oral] Data Selection via Optimal Control
	[ICLR 2025 Spotlight] RegMix: Data Mixture as Regression for Language Model Pre-training
	[NeurIPS 2024 Oral] Not All Tokens Are What You Need for Pretraining

