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Warmup: LISTA

▶ Least absolute shrinkage and selection operator (LASSO):

min
x

1

2
∥b − Dx∥22 + λ∥x∥1, where b = Dx∗ + ε

▶ Iterative Shrinkage Thresholding Algorithm (ISTA):

xk+1 = ηθ(W1b +W2x
k), k = 0, 1, 2, . . .

where W1 =
1
LD

⊤, W2 = I − 1
LD

⊤D, θ = 1
Lλ

▶ Learned ISTA (LISTA) with weights Θ = {W k
1 ,W

k
2 , θ

k}Kk=1:

xk+1 = ηθk (W
k
1 b +W k

2 x
k), k = 0, 1, · · · ,K − 1

Figure: ISTA Figure: Unrolled Learned ISTA Network
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A Typical Paradigm of Learning to Optimize (L2O)

▶ F : a collection of optimization problems sharing a similar structure

▶ Learning to Optimize: given x0 and N

min
{θi}

Ef ∈F

[
ℓf

(
{x fi }Ni=0

)]
s.t. x fi+1 = x fi −Ψi ({x fj ,∇f (x fj )}ij=0, θi ), 0 ≤ i ≤ N − 1

▶ ℓf emphasizes the dependence on f . The symbols Ψi represent
neural networks, while θi refers to their corresponding weights
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The Bitter Lesson of Model-based L2O

The biggest lesson that can be read from 70 years of AI research
is that general methods that leverage computation are ultimately
the most effective, and by a large margin.
—— The Bitter Lesson, March 13, 2019, Rich Sutton.

▶ Model-based L2O does not utilize the power of computation

▶ It needs a problem-specific customization, not general enough

▶ Can we learn a direct mapping from data to solutions
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Deep Constraint Completion and Correction (DC3)

▶ Given the problem data x

min
y∈Rn

fx(y) s.t. gx(y) ≤ 0, hx(y) = 0

where f , g , and h are potentially nonlinear and non-convex

▶ Training a neural network Nθ to approximate y given x

▶ A naive soft loss:

ℓsoft(ŷ) = fx(ŷ) + λg ∥ReLU (gx(ŷ))∥22 + λh ∥hx(ŷ)∥22 , ŷ = Nθ(x)

▶ Supervised learning framework on example (x , y):

ℓ(ŷ) = ∥ŷ − y∥22, ŷ = Nθ(x)

▶ Both can lead in practice to highly infeasible outputs
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DC3 equality completion

▶ Enforcing equality constraints by variable elimination

▶ First output a subset of the variables, z , then infer the remaining,
φx(z), according to hx([z , φx(z)]) = 0

▶ Backpropagation:

0 =
d

dz
hx

([
z

φx(z)

])
=

∂hx
∂z

+
∂hx

∂φx(z)

∂φx(z)

∂z
= Jhz + Jhφ

∂φx(z)

∂z

⇒ ∂φx(z)/∂z = −
(
Jhφ

)−1
Jhz

▶ Backpropagate losses through the network:

dℓ

dz
=

∂ℓ

∂z
+

∂ℓ

∂φx(z)

∂φx(z)

∂z︸ ︷︷ ︸
left matrix-vector product

=
∂ℓ

∂z
− ∂ℓ

∂φx(z)

(
Jhφ

)−1
Jhz
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Inequality correction (Highly questionable)

▶ Decreasing the inequality violation by taking a gradient step

▶ Denote the gradient of inequality violation w.r.t. [z , φx(z)] as

∆z = ∇z

∥∥∥∥ReLU(
gx

([
z

φx(z)

]))∥∥∥∥2
2

, ∆φx(z) =
∂φx(z)

∂z
∆z

▶ For a step size γ > 0, we define:

ρx

([
z

φx(z)

])
=

[
z − γ∆z

φx(z)− γ∆φx(z)

]
, ρ

(t)
x = ρx ◦ · · · ◦ ρx︸ ︷︷ ︸

t times
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Algorithm: Deep Constraint Completion and Correction

Algorithm Deep Constraint Completion and Correction (DC3)

Require: Assume equality completion procedure φx : Rm → Rn−m

1: procedure Train(X )
2: init neural network Nθ : Rd → Rm

3: while not converged do
4: for x ∈ X do
5: compute partial set of variables z = Nθ(x)

6: complete to full set of variables ỹ =
[
z⊤ φx(z)

⊤]⊤ ∈ Rn

7: correct to feasible (or approx. feasible) solution ŷ = ρ
(ttrain)
x (ỹ)

8: compute constraint-regularized loss ℓsoft(ŷ)
9: update θ using ∇θℓsoft(ŷ)

10: end for
11: end while
12: end procedure
13: procedure Test(x ,Nθ)
14: compute partial set of variables z = Nθ(x)

15: complete to full set of variables ỹ =
[
z⊤ φx(z)

⊤]⊤
16: correct to feasible solution ŷ = ρ

(ttest)
x (ỹ)

17: return ŷ
18: end procedure
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Comments on DC3

▶ Intuitive and effective for enforcing feasibility

▶ Assuming [z , φx(z)] already be close to feasible before correction

▶ The correction process is proved to converge for linear constraints

▶ The obtained feasible solution may be sub-optimal

▶ Backpropagating through ρ
(ttrain)
x (ỹ) needs more justification
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Lagrangian Duality for Constrained Deep Learning

▶ Consider the parametric constrained optimization

O(d) = argmin
y

f (y , d) subject to gi (y , d) ⩽ 0 (∀i ∈ [m])

▶ Given a set of samples D = {(dl , yl = O (dl))}nl=1, we solve

θ∗ = argmin
θ

n∑
l=1

L (Nθ (dl) , yl)

subject to gi (Nθ (dl) , dl) ⩽ 0 (∀i ∈ [m], l ∈ [n])

where L is a loss function, Nθ∗ is the learned optimizer
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Lagrangian Dual Framework for Constrained Optimization

▶ Given multipliers λ = (λ1, . . . , λm), Lagrangian loss writes

Lλ (Nθ (dl) , yl , dl) = L (Nθ (dl) , yl) +
m∑
i=1

λigi (Nθ (dl) , dl)

▶ Nθ∗(λ) is an approximation of the oracle O with

θ∗(λ) = argmin
θ

n∑
l=1

Lλ (Nθ (dl) , yl , dl)

▶ The Lagrangian dual computes the optimal multipliers

λ∗ = argmax
λ

min
θ

n∑
l=1

Lλ (Nθ (dl) , yl , dl)

▶ The strongest Lagrangian relaxation of O is Nθ∗(λ∗)
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Algorithm

Algorithm LDF for Constrained Optimization Problems

Require: D = (dl , yl)
n
l=1 : Training data

1: α, s = (s0, s1, . . .) : Optimizer and Lagrangian step sizes
2: λ0

i ← 0 ∀i ∈ [m]
3: for epoch k = 0, 1, . . . do
4: for all (yl , dl) ∈ D do
5: ŷl ← Nθ(λk )(dl)
6: θ ← θ − α∇θLλk (ŷl , yl , dl)
7: end for
8: λk+1

i ← λk
i + sk

∑n
l=1 gi (ŷl , dl) ∀i ∈ [m]

9: end for
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Self-Supervised Primal-Dual Learning

▶ Lagrangian dual framework has no guarantee for feasibility!

▶ Consider the Augmented Lagrangian loss

Lλ (ŷ , dl) = f (ŷ , dl) +
m∑
i=1

λigi (ŷ , dl) + ρ

m∑
i=1

ν(gi (ŷ , dl))

where ŷ = Nθ (dl) and ν(·) = max{·, 0}2 measures the violation

▶ Dual learning uses the dual network Mϕ to obtain λ∗
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Algorithm

Algorithm Self-Supervised Primal-Dual Learning

Require: D = (dl , yl)
n
l=1 : Training data

1: α, β, ρmax : Primal and dual step sizes, upper bound of ρ
2: λ0

i ← 0 ∀i ∈ [m]
3: for epoch k = 0, 1, . . . do
4: for all (yl , dl) ∈ D do
5: ŷl ← Nθk (dl)
6: θ ← θ − α∇θLλk (ŷl , dl)
7: end for
8: for all (yl , dl) ∈ D do
9: Freeze λk ← Mϕk (dl), ŷl ← Nθk (dl)

10: ϕ← ϕ− β∇ϕ∥Mϕ(dl)−max{λk + ρg(ŷl), 0}∥
11: end for
12: ρ← min {αρ, ρmax}
13: end for
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Transformer-based L2O

▶ JAX learned optimization package

▶ Inspired from BFGS, it constructs a rank one update each step

∆xk = Bksk , B̃k+1 = Bk+
L∑

l=1

ukl

(
ukl

)⊤
, Bk+1 = B̃k+1/

∥∥∥B̃k+1
∥∥∥

Linear

FC 
(ReLU)

FC 
(ReLU) Linear

Encoder Encoder

Linear

{x, dL
dx

, …} z N × 128

Bk−1

Encoder

Linear Linear

Bk

N × 128 N × 128 N × 128

N × 1 N × 1 N × 1

128 128 N × 2 {αk, dk}

B [λa exp(λbα) ⊙ d] Δx
Adafactor  
Features

Layer Norm Multi-Head (3) 
Attention Layer Norm FC 

(128, GeLU)

Transformer Encoder

FC 
(256, GeLU)

Block
N ×

:=
Apply Block 

independently 
to each row of 

the input

N ×
N ×

N × N × N ×
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VeLO: Training Versatile Learned Optimizers by Scaling Up

▶ JAX learned optimization package

▶ Trained with four thousand TPU-months of compute

▶ Requires no hyperparameter tuning, automatically adapting
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Figure: Optimizer performance on the 83 canonical tasks in the VeLOdrome
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Symbolic Discovery of Optimization Algorithms

▶ Google automl repository

▶ A total cost of 3K TPU V2 days

▶ Discover the Lion (EvoLved Sign Momentum) algorithm
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Many Thanks For Your Attention!
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