
A Continuous Model for Developing Fast
Algorithms

Zhonglin xie

Peking University

December 8, 2022

How Mathematicians Model Fast Algorithms: PEP
Fµ,L: µ-strongly convex L-smooth functions (µ ≥ 0)

Performance Estimate Problem (PEP): given N and x0

min
{hi,j}

max
f∈Fµ,L

‖∇f (xN) ‖
‖∇f (x0) ‖

s.t. xN obtained from

xi+1 = xi −
i∑

j=0
hi,j∇f(xj) and x0

Systematically generate the fast algorithms with worst-case
guarantees. Often tractable for first order methods.

Convex: Optimized Gradient Method (OGM)

Strongly convex: Information-Theoretic Exact Method

Composite, Operator Splitting, Primal Dual, ...

Simple proofs for first-order methods

PEP Summary

PROS

Convex interpolation: from infinite to finite problems

Mathematical-orientation: accelerate with guarantee

Very general: can be used to analyze any interpolable
function class

CONS

Ill-posed SDP: hard to scale when N is large

Not automatic: first get a numerical solution, then
manually approximate it with a symbolic formula

Pessimistic and conservative: try to minimize the
worst-case performance

How Computer Scientists Model Fast Algorithms: L2O
Learning to Optimize: given x0 and N

min
{θi}

Ef [f (xN)]

s.t. xi+1 = xi −NN({xj ,∇f(xj)}ij=0, θi), t = 1, . . . , N − 1

where f ∼ T , a probability measure defined in functional space

PROS: significant improvement; easy to implement

CONS: no theoretical guarantee; not explainable; finite iterate;
sometimes needs the ground truth x?

Selected
Optimizer

Online

Classical
Optimizers

New Optimizees

(a) Classic Optimizer

Learned
Optimizer

New Optmizees

Online

Learnable
Optimizer

 Update

Training
Optmizees

Training Dynamics

Update

Offline

(b) Learning to Optimize

An Equavilent Form of PEP
Given x0, minimizing ‖∇f(xN)‖ with a fixed N

min
{hi,j}

max
f∈Fµ,L

‖∇f (xN) ‖
‖∇f (x0) ‖

s.t. xN obtained from

xi+1 = xi −
i∑

j=0
hi,j∇f(xj) and x0

Given x0, minimizing N with a fixed optimality ‖∇f(xN)‖ ≤ ε

min
{hi,j}

max
f∈Fµ,L

N

s.t. xN obtained from

xi+1 = xi −
i∑

j=0
hi,j∇f(xj) and x0

N = min{n : ‖∇f (xn) ‖ ≤ ε}

Optimisitic and Computation Tractable Reformulation
Consider a function F (x; θ) with variable x and parameter θ.
Given a probability measure T of the parameter θ, we say T is
the probability measure of functions generated by
f(·) = F (·; θ), θ ∼ µ.

Given a task distribution f ∼ T , a tolerance ε and x0

min
{hi,j}

Ef [N]

s.t. xN obtained from

xi+1 = xi −
i∑

j=0
hi,j∇f(xj) and x0

N = min{n : ‖∇f (xn) ‖ ≤ ε}

N is not differentiable with respect to {hi,j}

We will solve this in a continuous time model!

A comparison of two approaches for acceleration

Ordinary Method

Accelerated Method

Accelerate

(a) Performance measure based

Ordinary Method

Accelerated Method Accelerate

(b) Complexity based

Optimization Methods: Discrete and Continuous

Gradient Flow
dx
dt (t) = −∇f(x(t))

Euler applied to gradient flow with tk = t0 + kh, xk ≈ x(tk)

xk+1 − xk
h

= −∇f(xk)⇔ xk+1 = xk − h∇f(xk)

Model Nesterov Accelerated Gradient using an ODE

ẍ(t) + 3
t
ẋ(t) +∇f(x(t)) = 0⇔

xk = yk−1 − s∇f (yk−1)

yk = xk + k − 1
k + 2 (xk − xk−1)

Derivation of Su-Boyd-Candès ODE
xk+1 − xk√

s
=
(

1− 3
k + 2

)
xk − xk−1√

s
−
√
s∇f (yk) .

Introduce the Ansatz xk ≈ x(k
√
s) for t ≥ 0. Put k = t/

√
s.

Then as the step size s goes to zero, x(t) ≈ xt/√s = xk

(xk+1 − xk) /
√
s = ẋ(t) + 1

2 ẍ(t)
√
s+ o(

√
s),

(xk − xk−1) /
√
s = ẋ(t)− 1

2 ẍ(t)
√
s+ o(

√
s)

and
√
s∇f (yk) =

√
s∇f(x(t)) + o(

√
s). Omit o(

√
s) term.

ẋ(t) + 1
2 ẍ(t)

√
s = (1− 3

√
s

t
)(ẋ(t)− 1

2 ẍ(t)
√
s)−

√
s∇f(x(t))

By comparing the coefficients of
√
s, we obtain

ẍ+ 3
t
ẋ+∇f(x) = 0

Convergence in Continuous Time

Define E(t) = t2 (f(x(t))− f?) + 2‖x+ tẋ/2− x?‖2

Ė = 2t (f(x)− f?) + t2〈∇f, ẋ〉+ 4
〈
x+ t

2 ẋ− x
?,

3
2 ẋ+ t

2 ẍ
〉

Substituting 3ẋ/2 + tẍ/2 with −t∇f(x)/2 gives

Ė = 2t (f(x)− f?) + 4 〈x− x?,−t∇f(x)/2〉
= 2t (f(x)− f?)− 2t 〈x− x?,∇f(x)〉
≤ 0

Lyapunov argument gives O(1/t2) rate

An ODE with Unprecedented Level of Generality

ẍ(t) + a

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + γ(t)∇f(x(t)) = 0

Denote w(t) = γ(t)− β̇(t)− β(t)/t. Provided the conditions

γ(t) > β̇(t) + β(t)
t
, tẇ(t) 6 (a− 3)w(t), for all t > t0,

the solution trajectory x(t) of above ODE satisfies

f(x(t))− f? = O
(1
t2w(t)

)
as t→ +∞∫ +∞

t0
t2β(t)w(t)‖∇f(x(t))‖2 dt < +∞

This ODE can be written as a first order system

ẋ(t) = v(t)− x(t)− β(t)∇f(x(t)),
v̇(t) = (1− a/t)ẋ(t) + (β̇(t)− γ(t))∇f(x(t)).

The Effects of the Hessian-driven Damping Term

10
0

10
1

10
-15

10
-10

10
-5

10
0

1.5 2 2.5 3

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure: f(x) = (x1 + x2)2 with different a, β, γ

The Hessian-driven damping term ∇2f(x(t))ẋ(t) is inspired
from Newton’s flow ∇2f(x(t))ẋ(t) +∇f(x(t)) = 0

Reduce the oscillation; Accelerate converge; Stabilize
discretization

From the Stopping Index N to the Stopping Time T

T = inf{t | ‖∇f(x(t))‖ ≤ ε, t ≥ t0}.

We further write T = T (f, a, β, γ) to emphasize the dependence
on the variables f, a, β, γ and take x0, v0, t0, ε as exogenous
variables.

T is the infimum of the set {t : ‖∇f(x(t))‖2 = ε2}.

Suppose θ is one of the variables a, β and γ, the variation of
both sides with respect to θ satisfies

2∇f(x(T))>∇2f(x(T))
(
ẋ(T)δT

δθ
+ δxT

δθ

)
= 0,

where xT represents the value of x at fixed time T .

Stopping Time Continued

Stopping time is a standard concept in random process. We
first introduce it to model fast algorithms, which does not need
ground truth solutions.

PROS

Pretty natural and general

Differentiable with respect to variables a, β and γ

CONS

Hard to generalize in the discrete time case

Definition of the stopping time of a function value-based
optimality condition involves f?

A Continuous Model for Fast Algorithms

Let w(t) = γ(t)− β̇(t)− β(t)/t. We want to find a stable
solution trajectory that converges fast on a task distribution:

min
a,β,γ

ET [T (f, a, β, γ)],

s.t. T (f, a, β, γ) = inf{t | ‖∇f(x(t))‖ ≤ ε, t ≥ t0}, where

ẍ(t) + a

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + γ(t)∇f(x(t)) = 0,

γ(t) > β̇(t) + β(t)
t
, tẇ(t) 6 (a− 3)w(t), ∀t > t0,

(sγ(t)−
√
sβ(t))∇2f(x(t)) �

√
sa/tI, ∀t > t0,

(2
√
sβ(t)− sγ(t))∇2f(x(t)) � (4− 2

√
sa/t)I, ∀t > t0.

The last two constraints come from the linear stability in
discretization, where

√
s denotes the step size of forward Euler

scheme.

Arbitrary Fast Convergence?

Recall the convergence rate

f(x(t))− f? = O
(1
t2w(t)

)
as t→ +∞

For any p ∈ N, simply setting β(t) ≡ 0 and a = p+ 1, γ(t) = tp−2

ẍ(t) + p+ 1
t

ẋ(t) + tp−2∇f (x(t)) = 0

⇒w(t) = γ(t)− β̇(t)− β(t)/t = tp−2

The convergence rate is f (x(t))− f? 6 O (1/tp).

We get arbitrary fast convergence rate with convex
differentiable functions in continuous time case.

What is wrong here?

Direct Runge-Kutta Discretization is Unstable
Consider the logistic regression problem

min
x∈Rn

f(x) = 1
N

N∑
i=1

log(1 + exp(−bi〈ai, w〉)),

where the data pairs {a,bi} ∈ Rn × {0, 1}, i ∈ [N]

0 25 50 75 100 125 150 175 200
iteration

10 3

10 2

10 1

100

f(x
)

DIN-RK
POLY-RK
GF-RK
DRK
SBC-RK
POLY-SYMP
GD
NAG
RGD

Figure: Directly applying 4-th Runge-Kutta with p = 5 diverges.

How to discretize: Methodologies
It is hard to obtain stable discretization!

“Empirically, we find that the algorithm is unstable. Even
for the simple case in which f is a quadratic function in
two dimensions, ... eventually the oscillation increases and
the iterates shoot off to infinity”—[Wibisono et al., 2016]

Geometric numerical integrator: the existence of
tp−2∇f(x(t)) makes the stepsize decrease to 0

Tradeoff between higher order convergence and large step
stability

Momentum restarting: hard to analysis; not stable enough;
a short-term solution

Why not selecting an ODE to fit an integrator?

In natural science, ODEs can not be changed

In optimization, ODEs can vary in a large range

Optimization is Not Numerical Solution

Figure: Discretization in Optimization

In optimization, we do not need an exact numerical solution

Provided the discretization has linear stability, we will approach
the minimizer finally!

Stability Implies Convergence

Linear Stability is a leading indicator!

Linear stability excesses 1 before the function value diverges

A new regularization condition: Linear Stability

This is a long-term solution

Stability Analysis for AVD-DIN System

Consider the forward Euler method with step length
√
s

x(t+ 2
√
s)− 2x(t+

√
s) + x(t)

s

+
(
α/t+ β(t)∇2f(x(t))

)
· x(t+

√
s)− x(t)√
s

+ γ(t)∇f(x(t)) = 0.

The characteristic polynomial is

|λ2I−b(t,
√
s)λI +(1−

√
sα/t)I +(sγ(t)−

√
sβ(t))∇2f(x(t))| = 0

where b(t,
√
s) = 2−

√
s(α/t+ β(t)∇2f(x(t))).

The necessary and sufficient condition

The necessary and sufficient condition for the roots (may be
complex) of r2 + µr + ν = 0, µ, ν ∈ R lie in the unit cycle is

ν ≤ 1, ν ≥ µ− 1, ν ≥ −µ− 1.

We get a necessary and sufficient condition for our
discretization to be stable:

(sγ(t)−
√
sβ(t))∇2f(x(t)) �

√
sα/tI,

(2
√
sβ(t)− sγ(t))∇2f(x(t)) � (4− 2

√
sα/t)I,

sγ(t)∇2f(x(t)) � 0.

Training a Polynomial Surrogate Model
Given a degree k ∈ N, and a step size s > 0, we choose

a = k + 3, β(t) =
k∑
i=0

pit
i, γ(t) = β(t)/

√
s,

with pi ≥ 0. When t0 is sufficiently large, this choice
automatically satisfies

γ(t) > β̇(t) + β(t)
t
, tẇ(t) 6 (a− 3)w(t), ∀t > t0;

(sγ(t)−
√
sβ(t))∇2f(x(t)) �

√
sa/tI, ∀t > t0.

Dropping above constraints gives:

min
p

ET [T (f, p)],

s.t. T (f, p) = inf{t | ‖∇f(x(t))‖ ≤ ε, t ≥ t0}, where

ẍ(t) + a

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + γ(t)∇f(x(t)) = 0,

√
sβ(t)λmax(∇2f(x(t))) ≤ 4− 2

√
sa/t, ∀t > t0.

Training Algorithm

REQUIRE: Training set D, which sampled from the probability
measure T of f . Degree k of the polynomials. Initial value x0.
Step size

√
s of forward Euler scheme. Events {ε0, ε1, . . . , εM}.

Initial value of the coefficient p0. Training epoch Nepoch.

ENSURE: A differential equation that adapts to the probability
measure T of f , converges fast and possesses stability under
forward Euler discretization with step size

√
s.

Algorithm 1 Stochastic Projected Gradient Descent for Poly-
nomial Surrogate Problem

1: for nepoch = 1, 2, . . . , Nepoch do
2: for nsample = 1, 2, . . . , |D| do
3: Randomly draw one sample f from D.
4: Simulate the solution trajectory x(t) of

ẍ(t) + a

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + γ(t)∇f(x(t)) = 0.

5: Record the event times Tm = inf{t | ‖∇f(x(t))‖ ≤
εm, t ≥ t0} for m = 0, 1, . . . ,M

6: Compute the derivative of TM with respect to p and
Perform a step of the gradient descent: p← p− ∂TM

∂p .
7: Denote the polyhedra

{p |
√
sβ(Tm)λmax(∇2f(x(Tm))) ≤ 4− 2

√
sa/Tm, ∀m}

as P. Project p with respect to it: p← ProjP(p).
8: end for
9: end for

Training Result in Different Datasets

0 5 10 15 20 25 30
Iteration

15

20

25

30

35

40

T

(a) a5a

0 2 4 6 8 10 12 14
Iteration

5

10

15

20

25

T

(b) mushrooms

0 5 10 15 20 25 30 35 40
Iteration

10

11

12

13

14

15

16

17

T

(c) phishing

Figure: Comparison of the training process in different datasets

Discrete time testing

xk+1 − xk√
s

= vk − xk − βk∇f(xk),

vk+1 − vk√
s

=
(
1− α/tk+1

)
(vk − xk+1 − βk+1∇f(xk+1))

+
(
β̇k+1 − γk+1

)
∇f(xk+1).

PROS:

can be extended to infinite iterates;

fully explainable; has convergence guarantee;

Testing Results

0 200 400 600 800 1000 1200 1400
iteration

10 5

10 4

10 3

10 2

10 1

100

f(x
)

NAG
poly-euler
init-euler

(a) a5a

0 200 400 600 800 1000 1200 1400
iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
)

NAG
poly-euler
init-euler

(b) mushrooms

0 200 400 600 800 1000 1200 1400
iteration

10 5

10 4

10 3

10 2

10 1

f(x
)

NAG
poly-euler
init-euler

(c) phishing

Figure: Comparison of the forward Euler discretization applied to
ODE trained in different datasets

Our Motivation&Methodology

A learning to optimize framework with theoretical guarantee

First give a condition that guarantees convergence

Then search parameters under this guarantee

Learning and adaptivity are equivalent

Illustrate this using gradient descent and adaptive methods

Examples

Nonsmooth: [Banert et al., 2020]

Inexact gradient: [Banert et al., 2021]

Future Directions

Precondition (dimension dependent)

Investigate discrete scheme directly (We solve the
continuous time model numerically)

New adaptive methods (In this work, the ODE remembers
the local curvature first, then using this information to
discretize. Another way is estimates these quantities
adaptively.)

Apply this paradigm to other problems (Composite,
Monotone inclusion, ADMM, Primal-dual, ...)

Closed-loop control? (Continuous adaptivity)

Direct solve the equivalent form of PEP!?

Epilogue

A general viewpoint of optimization and learning?

Parameterization gives a general way for producing
optimization methods

Best papers preferring analytical solutions, e.g. Analytic
LISTA, Analytic DPM (PnP, White-Box Net)

Learning researchers are willing to fire themselves

The most important thing is the meaning of each parameter

References I

Banert, S., Ringh, A., Adler, J., Karlsson, J., and Öktem,
O. (2020).

Data-Driven Nonsmooth Optimization.

SIAM Journal on Optimization, 30(1):102–131.

Banert, S., Rudzusika, J., Öktem, O., and Adler, J. (2021).

Accelerated Forward-Backward Optimization using Deep
Learning.

arXiv:2105.05210 [math].

References II

Wibisono, A., Wilson, A. C., and Jordan, M. I. (2016).

A variational perspective on accelerated methods in
optimization.

Proceedings of the National Academy of Sciences,
113(47):E7351–E7358.

	How to Model Fast Algorithms
	A Continuous Model for Fast Algorithms
	From the Stopping Index to Stopping Time

