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A continuous-time viewpoint of acceleration methods: minx f (x)
▶ Gradient descent (GD) method corresponds to gradient flow

xk+1 = xk −
√

s∇f (xk) ⇔ ẋ(t) = −∇f (x(t))

▶ Nesterov accelerated gradient (NAG) method corresponds to


xk = yk−1 − s∇f (yk−1)

yk = xk + k − 1
k + 2 (xk − xk−1)

⇔
ẍ(t) + 3

t ẋ(t) +
√

s∇2f (x(t))ẋ(t)

+
(

1 + 3
√

s
2t

)
∇f (x(t)) = 0

▶ Inertial system with Hessian-driven damping

ẍ(t) + α

t ẋ(t) + β(t)∇2f (x(t))ẋ(t) + γ(t)∇f (x(t)) = 0 (ISHD)
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Explicit discretization with fixed stepsize is unstable
Let w(t) = γ(t)− β̇(t)− β(t)/t. Convergence condition for (ISHD) writes

γ(t) > β̇(t) + β(t)
t , tẇ(t) ⩽ (α− 3)w(t), for all t ⩾ t0 (ISHD-CVG)

Convergence rate: f (x(t))− f⋆ = O
(
1/(t2w(t))

)
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▶ Consider

min
x∈Rn

f (x) = 1
N

N∑
i=1

log(1 + exp(−bi⟨ai ,w⟩))

where the data pairs {a,bi} ∈ Rn × {0, 1}, i ∈ [N]

▶ Set p = 5, α = 2p + 1, β(t) ≡ 0 and γ(t) = p2tp−2

▶ (ISHD-CVG) holds and f (x(t))− f⋆ ≤ O(1/tp)

▶ Directly applying 4-th Runge-Kutta diverges! 4 / 41



Two important questions
▶ How to translate the fast convergence properties of ODEs to algorithms?

Figure: Rate-matching discretization

Combine error analysis in ODE and complexity
analysis in optimization

▶ How to select the best coefficients for (ISHD)?
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A fundamental result: an enhanced convergence condition for ISHD
Theorem 1

Given κ ∈ (0, 1], λ ∈ (0, α− 1], f is twice differentiable convex,

δ(t) = t2(γ(t)− κβ̇(t)− κβ(t)/t) + (κ(α− 1− λ)− λ(1− κ))tβ(t),
w(t) = γ(t)− β̇(t)− β(t)/t, δ(t) > 0, and δ̇(t) ≤ λtw(t),

(CVG-CDT)

where α ⩾ 3, t0 > 0, ε > 0 are real numbers, β and γ are nonnegative continuously
differentiable functions defined on [t0,+∞). Then x(t) is bounded and

f (x(t))− f⋆ ≤ O
( 1
δ(t)

)
, ∥∇f (x(t))∥ ≤ O

( 1
tβ(t)

)
, ∥ẋ(t)∥ ≤ O

(1
t

)
,∫ ∞

t0
(λtw(t)− δ̇(t))(f (x(t))− f⋆) dt ≤ ∞,

∫ ∞

t0
t(α− 1− λ)∥ẋ(t)∥2 dt ≤ ∞,∫ ∞

t0
t2β(t)w(t)∥∇f (x)∥2 dt ≤ ∞,

∫ ∞

t0
t2β(t)⟨∇2f (x(t))ẋ(t), ẋ(t)⟩ dt ≤ ∞.
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Proof: Lyapunov function and term cancelling
▶ Construct the Lyapunov function

E (t) =δ(t) (f (x(t))− f⋆) + 1
2∥λ(x(t)− x⋆) + t(ẋ(t) + κβ(t)∇f (x(t)))∥2

+ λ(1− κ)tβ(t)⟨∇f (x(t)), x(t)− x⋆⟩+ κ(1− κ)
2 ∥tβ(t)∇f (x)∥2

+ λ(α− 1− λ)
2 ∥x(t)− x⋆∥2

▶ Differentiating through t, we set the term with brown color to 0:
d
dt E (t) =δ̇(t)(f (x(t))− f⋆)− λtw(t)⟨∇f (x(t)), x(t)− x⋆⟩ − (α− 1− λ)t∥ẋ(t)∥2

+
(
δ(t)−

(
t2u(t) + (κ(α− 1− λ)− λ(1− κ))tβ(t)

))
⟨∇f (x(t)), ẋ(t)⟩

− κt2β(t)w(t)∥∇f (x(t))∥2 − (1− κ)t2β(t)⟨∇2f (x(t))ẋ(t), ẋ(t)⟩ ≤ 0

▶ Integrating the inequality above from t0 to t gives E (t) ≤ E (t0)
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Applying forward Euler scheme to (ISHD)
▶ Let v(t0) = x(t0) + β(t0)∇f (x(t0)) and

ψΞ(x(t), v(t), t) =

 v(t)− β(t)∇f (x(t))

−αt (v(t)− β(t)∇f (x(t))) + (β̇(t)− γ(t))∇f (x(t))

 (1)

▶ The equation (ISHD) can be reformulated as the first-order system(
ẋ(t)
v̇(t)

)
= ψΞ(x(t), v(t), t), notice that ∇2f (x(t))ẋ(t) = d

dt∇f (x(t))

▶ Let h be the step size, tk = t0 + kh, k ≥ 0. The forward Euler scheme of the (ISHD) is
Explicit Inertial Gradient Algorithm with Correction (EIGAC)

xk+1 − xk
h = vk − β(tk)∇f (xk),

vk+1 − vk
h = −αt (vk − β(tk)∇f (xk)) + (β̇(tk)− γ(tk))∇f (xk)

(EIGAC)

10 / 41



Conditions for stable discretization

Theorem 2

Suppose the assumptions in Theorem 1 and (CVG-CDT) hold, 0 ≤ C1, 0 < C2 ≤ 1/h− 1/t0,
and 0 < C3 fulfill |β̇(t)| ≤ C1β(t), |γ̇(t)− β̈(t)| ≤ C2(γ(t)− β̇(t)), β(t) ≤ C3w(t). Given t0,
s0, and h, the sequence {xk}∞k=0 is generated by (EIGAC) and x̄(t) is defined as

x̄(t) = xk + xk+1 − xk
h (t − tk), t ∈ [tk , tk+1).

Then, it holds f (xk)− f⋆ ≤ O(1/k) under the following stability condition:

Λ(x , f ) ≥ ∥∇2f (x)∥, αβ(t)/t ≤ γ(t)− β̇(t) ≤ β(t)/h, (STB-CDT)√∫ 1

0
Λ((1− τ)X (t,Ξ, f ) + τ x̄(t), f ) dτ ≤

√
γ(t)− β̇(t) +

√
γ(t)− β̇(t)− α

t β(t)
β(t) .
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Key technique: error decomposition
▶ Local truncated error:

φ(t) =
(

x(t + h)− x(t)
v(t + h)− v(t)

)
− h

(
v(t)− β(t)∇f (x(t))

−α
t v(t) +

(
α
t β(t) + β̇(t)− γ(t)

)
∇f (x(t))

)

▶ Global error: rk = x(tk)− xk , sk = v(tk)− vk , and ek = (rk , sk)

▶ We only need to control ek+1, which has two resources

ek+1 =
(

rk+1
sk+1

)
=
(

x(tk)
v(tk)

)
+
(

x(tk + h)− x(tk)
v(tk + h)− v(tk)

)
−
(

xk
vk

)
− hψ(tk)

=
(

I − hβ(tk)G(tk) hI
(αβ(tk)/tk + β̇(tk)− γ(tk))G(tk) (1− αh/tk)I

)
︸ ︷︷ ︸

W (tk ,G(tk))

(
rk
sk

)
︸ ︷︷ ︸

ek

+φΞ(tk)

where G(tk) =
∫ 1

0 ∇2f (x(tk) + τ rk) dτ . Abbreviate Wk = W (tk ,G(tk))
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Proof: bound the product of contraction factor
▶ We estimate ∥en+1∥ using

∥en+1∥ ≤ ∥Wn∥∥en∥+ h∥φ(tn)∥ ≤
n∏

k=0
∥Wk∥∥e0∥︸ ︷︷ ︸

0

+ ∥φ(tn)∥+
n−1∑
k=0

n∏
l=k+1

∥Wl∥∥φ(tl)∥

▶ Matrix analysis and (STB-CDT) ensure that ∥Wk∥ = ρ(tk) ≤ 1− αh/(2tk)

▶ Define the contraction factor ρ(t) = ∥W (t,G(t))∥. For k ≤ n, we have
n∏

l=k
∥Wl∥ =

n∏
l=k

ρ(tl) = exp
( n∑

l=k
ln (ρl − 1 + 1)

)
≤ exp

( n∑
l=k

(ρl − 1)
)

≤ exp
(
−

n∑
l=k

αh
2tl

)
≤ exp

(
−α2

∫ tn+1

tk

1
t dt

)
=
( tk

tn+1

)α/2
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Proof: bound the summation of local truncated errors
▶ Set M1 = max{1 + (α+ 1)/t0,C2/h + (1 + α/t0)(1/h + C1), α/t0 + 1/h + 1}. We have

∥φ(t)∥ ≤ M1

∫ t+h

t

(
α

t ∥ẋ(τ)∥+ ∥β(τ)∇f (x(τ))∥+ β(τ)∥∇2f (x(τ))ẋ(τ)∥
)

dτ

▶ Using Cauchy inequality and Theorem 1, for certain M3, we have

∥φ(t)∥ ≤ o(1/t) and
n∑

k=0
tα/2
k ∥φ(tk)∥ ≤ M3tα/2−1/2

n

▶ Combining these results, we have

∥en+1∥ ≤ ∥φ(tn)∥+
n−1∑
k=0

n∏
l=k+1

∥Wl∥∥φ(tl)∥ ≤
n∑

k=0

( tk+1
tn+1

)α/2
∥φ(tk)∥ ≤ M3

1
√tn+1
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Proof: derive the function value minimization rate

▶ The function value can be decomposed as

f (xk)− f⋆ ≤|f (xk)− f (x(tk))|+ |f (x(tk))− f⋆|

≤ ∥∇f (x(tk))∥︸ ︷︷ ︸
O(1/(tkβ(tk)))

∥ek∥+ 1
2

∥∥∥∥∫ 1

0
∇2f (x(tk) + τek) dτ

∥∥∥∥︸ ︷︷ ︸
O(1/β(tk))

∥ek∥2︸ ︷︷ ︸
O(1/tk)

+ E (t0)
t2
k w(tk)

▶ The rate is at least O(1/k), while the dominate term comes from the global error
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Stopping time: a differentiable continuous-time complexity

Ordinary Method

Accelerated Method

Accelerate

(a) Measure-based

Ordinary Method

Accelerated Method Accelerate

(b) Complexity-based

Definition 3 (Stopping Time)

Given the initial time t0, the initial value x0, the initial velocity ẋ(t0), the trajectory X (Ξ, t, f )
of the system (ISHD), and a tolerance ε, the stopping time of the criterion ∥∇f (x)∥ ≤ ε is

T (Ξ, f ) = inf{t | ∥∇f (X (Ξ, t, f ))∥ ≤ ε, t ≥ t0}
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Tackle the point-wise contraints using integration
▶ With w(t), δ(t) defined in (CVG-CDT), we introduce

p(x , x̄ ,Ξ, t, f ) =
[
β(t)

√∫ 1

0
Λ((1− τ)x + τ x̄ , f ) dτ −

√
γ(t)− β̇(t)

−
√
γ(t)− β̇(t)− α

t β(t)
]

+

q(Ξ, t) =
[
γ(t)− β̇(t)− β(t)/h

]
+

+
[
β̇(t) + αβ(t)/t − γ(t)

]
+

+
[
δ̇(t)− λtw(t)

]
+

+ [−δ(t)]+

▶ Setting P,Q ≤ 0 ensures (CVG-CDT) and (STB-CDT) hold for f

P(Ξ, f ) =
∫ T (Ξ,f )

t0
p(X (t,Ξ, f ), x̄(t),Ξ, t, f ) dt, Q(Ξ, f ) =

∫ T (Ξ,f )

t0
q(Ξ, t) dt
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A L2O framework for selecting the best coefficients

▶ Induced distribution: Given a random variable ξ ∼ P. We say P is the induced
probability of the parameterized function f (·; ξ)

Ef [T (Ξ, f )] =
∫
ξ

T (Ξ, f (·; ξ)) dP(ξ) = Eξ[T (Ξ, f (·; ξ))]

▶ Framework: minimize the expectation of stopping time under conditions of convergence
and stable discretization

min
Ξ

Ef [T (Ξ, f )]

s.t. Ef [P(Ξ, f )] ≤ 0, Ef [Q(Ξ, f )] ≤ 0

▶ Parameterization: β → βθ1 , γ → γθ2 . Set θ = (α, θ1, θ2)
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Solving the L2O problem using exact penalty method
Given the penalty parameter ρ, the ℓ1 exact penalty problem writes

min
θ

Υ(θ) = Ef [T (θ, f )] + ρ (Ef [P(θ, f )] + Ef [Q(θ, f )])

= Ef [T (θ, f ) + ρ (P(θ, f ) + Q(θ, f ))]

Algorithm Stochastic Penalty Method (StoPM) for L2O problem

1: Input: initial weight θ0, penalty coefficient ρ, training dataset F
2: while Not(Stopping Condition) do
3: Sample a function: fk ∈ F
4: Computing the gradients JT , JP and JQ correspond to T ,P and Q
5: Update variable: θk+1 ← θk − η(DT + DP + DQ)
6: Update index: k ← k + 1
7: end while
8: Output: the trained weight θ⋆

20 / 41



Outline

1 Motivations

2 Conditions for stability-preserving discretization

3 Selecting the best coefficients using learning to optimize

4 Computation of the conservative gradients

5 Convergence analysis of StoPM

6 Numerical results

21 / 41



Conservative gradient
▶ When parameterize α, β, γ using neural networks, they may be nonsmooth

▶ The output of auto differentiation in nonsmooth functions may not be Clarke
subdifferentials, but they are certainly conservative gradients

▶ Consider the example:

f (s) = ([−s]+ + s)− [s]+ ≡ 0 =⇒
autograd using TensorFlow

g(s) =
{

0 (s ̸= 0)
1 (s = 0)

g is not the Clarke subdifferential of f but a conservative gradient

▶ Conservative gradient generalizes subdifferentials while preserving chain rule

▶ Ψ is termed the conservative Jacobian (gradient if m = 1) of π if and only if
d
dιπ(r(ι)) = Aṙ(ι), for all A ∈ Ψ(r(ι)), for almost all ι ∈ [0, 1]

for any absolutely continuous curve r : [0, 1]→ Rd
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Differentiate through the ODE flow of (ISHD): ∂X/∂θ

▶ Reformulate (ISHD) as a first-order system (1) with a parameterized right-hand-side
term ψ:

ψ : R2n+1+p → R2n, (x , v , t, θ) 7→ ψθ(x , v , t).
Denote the flow of (1) with parameterized ψ as X (x0, v0, θ, t)

▶ Denote Dψ : R2n+1+p ⇒ R2n×(2n+1+p) as a conservative Jacobian of ψ with respect to
(x , v , t, θ). The coordinate projection (partial derivative) writes
Dψ

x ,v = Πx ,v Dψ,Dψ
t = ΠtDψ and Dψ

θ = ΠθDψ

▶ Applying the general result to the first-order system (1): θ 7→ A(t0) is a conservative
Jacobian of θ → X (x0, v0, θ, t1) (smooth version: ∂X/∂θ)

Ȧ(t) = Dψ
x ,v (t)A(t) + Dψ

θ (t), A(t1) = 02n×p for all t ∈ [t0, t1]
▶ Smooth version:

∂X
∂θ

=
∫ t1

t0

∂ψθ
∂x

dX
dθ + ∂ψθ

∂θ
dt
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Evaluate the derivative of stopping time: ∇θT (θ, f )
▶ Take limit by continuity: ∥∇f (X (T (θ, f ), f , θ))∥2 − ε2 ≡ 0

▶ Implicit function theorem (valid in nonsmooth case):

∇f (X )⊤∇2f (X )
(
∂X
∂t

∣∣∣∣
t=T
∇θT (θ, f ) + ∂X

∂θ

)
= 0

where T = T (θ, f ),X = X (T (θ, f ), f , θ)

▶ Invoking the first-order form of (ISHD):

∂X
∂t

∣∣∣∣
t=T

= ẋ(T ) = v(T )− x(T )− β(T )∇f (x(T ))

where x(t) = X (t, f , θ)

▶ The derivative:

∇θT (θ, f ) =
(
∇f (X )⊤∇2f (X ) (v(T )− X − β(T )∇f (X ))

)−1
∇f (X )⊤∇2f (X )∂X

∂θ
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Conservative gradient of the constraints
▶ Recap:

P(θ, f ) =
∫ T (θ,f )

t0
p(X (t, θ, f ), x̄(t), θ, t, f ) dt, Q(θ, f ) =

∫ T (θ,f )

t0
q(θ, t) dt

▶ Applying the chain rule gives
dP(θ, f )

dθ =
∫ T (θ,f )

t0

∂ψθ(s(t), t, f )
∂θ

w(t) + ∂p(x(t), x̄(t), θ, t, f )
∂θ

dt

+ p(x(T ), x̄(T ), θ,T , f )dT (θ, f )
dθ

dQ(θ, f )
dθ =

∫ T (θ,f )

t0

dq(θ, t)
dθ dt + q(θ,T )dT (θ, f )

dθ
where x̄(·) is the interpolation of {xk} defined in Theorem 2, w(·) is the solution of

−
(
∂p(x(t),x̄(t),θ,t,f )

∂x
0n×1

)
− ∂ψθ(s(t), t, f )

∂s w(t) = ẇ(t), w(T (θ, f )) = 02n×1
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Clarke subdifferential of the point-wise maximal function
▶ Let {fη : Rn → (−∞,+∞]}η∈A be a family of proper convex functions and

f (x) = sup
η∈A

fη(x)

▶ If x0 ∈
⋂
η∈A int domfη, and I(x0) = {η ∈ A | fη(x0) = f (x0)}, then

conv
( ⋃
η∈I(x0)

∂fη(x0)
)

= ∂f (x0)

▶ λmax(A) = sup∥u∥=1 u⊤Au. Set z = arg max
∥u∥=1

u⊤∇2f (x)u. We have

∂Λ(f , x)
∂x =

{〈
∂λmax(A)

∂A

∣∣∣∣
A=∇2f (x)

,
∂∇2f (x)
∂xk

〉}
k

=

∑
i ,j
∂ijk f (x)zizj


k

= d
dη2

(
d

dη1
∇f (x + η1z + η2z)

∣∣∣∣
η1=0

)∣∣∣∣∣
η2=0

= D3f (x)[z , z ]

when Λ(f , x) = λmax(∇2f (x)). This enables the evaluation of ∂p/∂θ, ∂p/∂x
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Criteria for D-stationarity using directional derivative

▶ Let Υ be Lipschitz continuous near θ̄

▶ The D-directional derivative of Υ at θ̄ along a nonzero vector ϑ:

Υ◦(θ̄;ϑ) ≜ lim sup
τ↓0

DΥ(θ̄ + τϑ)

▶ D-stationarity: 0 ∈ ∂Υ(θ)

▶ Since D has closed convex graph, θ is a D-stationary point of Υ if and only if
Υ◦(θ;ϑ) ≥ 0 for all ϑ ∈ Rdθ
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Precludes infeasible stationary point using sufficient decrease condition
▶ Given the training dataset F , we denote the residual function as

R(θ) = Ef [P(θ, f ) + Q(θ, f )]

▶ This function measures the constraints violation. The feasible set is defined by
S = {θ | P(θ, f ) ≤ 0,Q(θ, f ) ≤ 0, ∀f ∈ F}

Assumption 1 (Uniform sufficient decrease condition)

For each infeasible point θ, i.e. θ /∈ S, there exists a nonzero vector ϑ, such that
R◦(θ;ϑ) ≤ −c∥ϑ∥. Here the constant c is uniform for each θ.

Theorem 4

Suppose Ef [T (θ, f )] is globally Lipschitz continuous with Lipschitz constant LT . Let
Assumption 1 hold. Given the penalty parameter ρ > LT/c, any infeasible point of the
penalty function Υ can not be a D-stationary point.
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Sufficient decrease condition precludes infeasible stationary point

▶ Consider the penalty function

Υ(θ) = Ef [T (θ, f ) + ρ(P(θ, f ) + Q(θ, f ))]

▶ For any infeasible point θ, using Assumption 1, there must exists a direction ϑ, such that

Υ◦(θ;ϑ) = Ef [T (·, f )]◦(θ;ϑ) + ρR◦(θ, ϑ) ≤ LT∥ϑ∥ − cρ∥ϑ∥ < 0

▶ The criteria of D-stationary point ensures that θ cannot be a D-stationary point of Υ
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SGD converges with (nonsmooth) auto-differentiation: Assumptions
Assumption 2 (Assumptions of the SGD)

1. The step sizes {ηk}k≥1 satisfy

ηk ≥ 0,
∞∑

k=1
ηk =∞, and

∞∑
k=1

η2
k <∞.

2. Almost surely, the iterates {θk}k≥1 are bounded, i.e., supk≥1 ∥θk∥ <∞.
3. {ξk}k≥1 is a uniformly bounded difference martingale sequence with respect to the

increasing σ-fields
Fk = σ(θj , ϱj , ξj : j ≤ k).

In other words, there exists a constant Mξ > 0 such that

E[ξk | Fk ] = 0 and E[∥ξk∥2 | Fk ] ≤ Mξ for all k ≥ 1.

31 / 41



SGD converges with (nonsmooth) auto-differentiation

Assumption 3

The complementary of {Υ(θ) | 0 ∈ DΥ(θ)} is dense in R.

Theorem 5 (SGD converges using conservative gradient)

Suppose that Assumptions 2 and 3 hold. Then every limit point of {θk}k≥1 is stationary and
the function values {Υ(θk)}k≥1 converge.

Theorem 6 (Convergence guarantee for Algorithm 1)

Suppose Assumption 1, 2 and 3 hold, {θk}k≥1 is generated by Algorithm 1. Then almost
surely, every limit point θ⋆ of {θk}k≥1 satisfies θ⋆ ∈ S, 0 ∈ DΥ(θ⋆) and the sequence
{Υ(θk)}k≥1 converges.
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Setting and datasets

▶ Consider the logistic regression problem defined by

min
x∈Rn

fD(x) = 1
|D |

∑
(ai ,bi )∈D

log(1 + exp(−bi⟨ai , x⟩)),

where D is a subset of a given dataset Σ and {ai , bi} ∈ Rn × {0, 1}, i ∈ [|D |]

▶ The datasets are listed as below

Dataset n Ntrain Ntest Separable
a5a 123 6, 414 26, 147 No
w3a 300 4, 912 44, 837 No

mushrooms 112 3, 200 4, 924 Yes
covtype 54 102, 400 478, 612 No
phishing 68 8, 192 2, 863 No
separable 101 20, 480 20, 480 Yes
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Training results
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Figure: The training process in different tasks.
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Testing: Compared methods

▶ GD. xk+1 = xk − h∇f (xk). We set the stepsize as h = 1/L

▶ NAG. We choose h = 1/L and employ the version for convex functions

yk+1 = xk − h∇f (xk), xk+1 = yk+1 + k − 1
k + 2(yk+1 − yk)

▶ EIGAC. Explicit inertial gradient algorithm with correction. We provide two versions of
EIGAC: default coefficients

α = 6, β(t) = (4/h − 2α/t) /L, and β(t) = hγ(t)

and the coefficients learned by Algorithm 1
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Testing: Compared methods

▶ IGAHD. Inertial gradient algorithm with Hessian-driven damping. This method is
obtained by applying a NAG inspired time discretization of

ẍ(t) + α

t ẋ(t) + β∇2f (x(t))ẋ(t) +
(

1 + β

t

)
∇f (x(t)) = 0

Let s = 1/L. In each iteration, setting αk = 1− α/k, the method performsyk = xk + αk (xk − xk−1)− β
√

s (∇f (xk)−∇f (xk−1))− β
√

s
k ∇f (xk−1)

xk+1 = yk − s∇f (yk)

IGAHD owns O(1/k2) convergence rate when 0 ≤ β < 2/
√

s and s ≤ 1/L
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Testing results
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