ODE-based Learning to Optimize

Zhonglin Xie

Beijing International Center for Mathematical Research Peking University

Joint work with Wotao Yin, Zaiwen Wen

On the Celebration of the 70th Anniversary of Chongqing Normal University

June 19, 2024

Outline

Motivations

- 2 Conditions for stability-preserving discretization
- Selecting the best coefficients using learning to optimize
- Omputation of the conservative gradients
- 5 Convergence analysis of StoPM

Numerical results

A continuous-time viewpoint of acceleration methods: $\min_x f(x)$

Gradient descent (GD) method corresponds to gradient flow

$$x_{k+1} = x_k - \sqrt{s}
abla f(x_k) \quad \Leftrightarrow \quad \dot{x}(t) = -
abla f(x(t))$$

Nesterov accelerated gradient (NAG) method corresponds to

$$\begin{cases} x_k = y_{k-1} - s\nabla f(y_{k-1}) & \ddot{x}(t) + \frac{3}{t}\dot{x}(t) + \sqrt{s}\nabla^2 f(x(t))\dot{x}(t) \\ y_k = x_k + \frac{k-1}{k+2}(x_k - x_{k-1}) & \Leftrightarrow & + \left(1 + \frac{3\sqrt{s}}{2t}\right)\nabla f(x(t)) = 0 \end{cases}$$

Inertial system with Hessian-driven damping

$$\ddot{x}(t) + \frac{\alpha}{t}\dot{x}(t) + \beta(t)\nabla^2 f(x(t))\dot{x}(t) + \gamma(t)\nabla f(x(t)) = 0$$
 (ISHD)

Explicit discretization with fixed stepsize is unstable

Let
$$w(t) = \gamma(t) - \dot{\beta}(t) - \beta(t)/t$$
. Convergence condition for (ISHD) writes
 $\gamma(t) > \dot{\beta}(t) + \frac{\beta(t)}{t}, \quad t\dot{w}(t) \le (\alpha - 3)w(t), \text{ for all } t \ge t_0$ (ISHD-CVG)
Convergence rate: $f(x(t)) - f_t = O(1/(t^2w(t)))$

(נוי

Consider

$$\min_{x \in \mathbb{R}^n} f(x) = rac{1}{N} \sum_{i=1}^N \log(1 + \exp(-b_i \langle a_i, w \rangle))$$

where the data pairs $\{a, b_i\} \in \mathbb{R}^n \times \{0, 1\}, i \in [N]$

• Set
$$p = 5, \alpha = 2p + 1, \beta(t) \equiv 0$$
 and $\gamma(t) = p^2 t^{p-2}$

▶ (ISHD-CVG) holds and $f(x(t)) - f_{\star} \leq \mathcal{O}(1/t^{p})$

Directly applying 4-th Runge-Kutta diverges!

Two important questions

▶ How to translate the fast convergence properties of ODEs to algorithms?

Combine error analysis in ODE and complexity analysis in optimization

How to select the best coefficients for (ISHD)?

A learning to optimize framework with theoretical guarantee

Figure: Learning to optimize

Our training and testing framework

Outline

Motivations

2 Conditions for stability-preserving discretization

Selecting the best coefficients using learning to optimize

Omputation of the conservative gradients

5 Convergence analysis of StoPM

Numerical results

A fundamental result: an enhanced convergence condition for ISHD

Theorem 1

Given $\kappa \in (0,1], \lambda \in (0, \alpha - 1]$, f is twice differentiable convex,

$$\delta(t) = t^{2}(\gamma(t) - \kappa\dot{\beta}(t) - \kappa\beta(t)/t) + (\kappa(\alpha - 1 - \lambda) - \lambda(1 - \kappa))t\beta(t),$$

$$w(t) = \gamma(t) - \dot{\beta}(t) - \beta(t)/t, \quad \delta(t) > 0, \quad \text{and} \quad \dot{\delta}(t) \le \lambda tw(t),$$
(CVG-CDT)

where $\alpha \ge 3, t_0 > 0, \varepsilon > 0$ are real numbers, β and γ are nonnegative continuously differentiable functions defined on $[t_0, +\infty)$. Then x(t) is bounded and

$$\begin{split} f(\mathbf{x}(t)) &- f_{\star} \leq \mathcal{O}\left(\frac{1}{\delta(t)}\right), \ \|\nabla f(\mathbf{x}(t))\| \leq \mathcal{O}\left(\frac{1}{t\beta(t)}\right), \ \|\dot{\mathbf{x}}(t)\| \leq \mathcal{O}\left(\frac{1}{t}\right), \\ \int_{t_0}^{\infty} (\lambda t w(t) - \dot{\delta}(t))(f(\mathbf{x}(t)) - f_{\star}) \, \mathrm{d}t \leq \infty, \quad \int_{t_0}^{\infty} t(\alpha - 1 - \lambda) \|\dot{\mathbf{x}}(t)\|^2 \, \mathrm{d}t \leq \infty, \\ \int_{t_0}^{\infty} t^2 \beta(t) w(t) \|\nabla f(\mathbf{x})\|^2 \, \mathrm{d}t \leq \infty, \quad \int_{t_0}^{\infty} t^2 \beta(t) \langle \nabla^2 f(\mathbf{x}(t)) \dot{\mathbf{x}}(t), \dot{\mathbf{x}}(t) \rangle \, \mathrm{d}t \leq \infty. \end{split}$$

Proof: Lyapunov function and term cancelling

Construct the Lyapunov function

$$\begin{split} E(t) = &\delta(t) \left(f(x(t)) - f_{\star} \right) + \frac{1}{2} \|\lambda(x(t) - x_{\star}) + t(\dot{x}(t) + \kappa\beta(t)\nabla f(x(t)))\|^2 \\ &+ \lambda(1 - \kappa)t\beta(t) \langle \nabla f(x(t)), x(t) - x_{\star} \rangle + \frac{\kappa(1 - \kappa)}{2} \|t\beta(t)\nabla f(x)\|^2 \\ &+ \frac{\lambda(\alpha - 1 - \lambda)}{2} \|x(t) - x_{\star}\|^2 \end{split}$$

Differentiating through t, we set the term with brown color to 0:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} E(t) = &\dot{\delta}(t)(f(x(t)) - f_{\star}) - \lambda t w(t) \langle \nabla f(x(t)), x(t) - x_{\star} \rangle - (\alpha - 1 - \lambda) t \|\dot{x}(t)\|^2 \\ &+ \left(\delta(t) - (t^2 u(t) + (\kappa(\alpha - 1 - \lambda) - \lambda(1 - \kappa)) t \beta(t)) \right) \langle \nabla f(x(t)), \dot{x}(t) \rangle \\ &- \kappa t^2 \beta(t) w(t) \| \nabla f(x(t)) \|^2 - (1 - \kappa) t^2 \beta(t) \langle \nabla^2 f(x(t)) \dot{x}(t), \dot{x}(t) \rangle \leq 0 \end{split}$$

▶ Integrating the inequality above from t_0 to t gives $E(t) \le E(t_0)$

Applying forward Euler scheme to (ISHD)

• Let
$$v(t_0) = x(t_0) + \beta(t_0) \nabla f(x(t_0))$$
 and
 $\psi_{\Xi}(x(t), v(t), t) = \begin{pmatrix} v(t) - \beta(t) \nabla f(x(t)) \\ -\frac{\alpha}{t} (v(t) - \beta(t) \nabla f(x(t))) + (\dot{\beta}(t) - \gamma(t)) \nabla f(x(t)) \end{pmatrix}$ (1)

▶ The equation (ISHD) can be reformulated as the first-order system

$$\begin{pmatrix} \dot{x}(t) \\ \dot{v}(t) \end{pmatrix} = \psi_{\Xi}(x(t), v(t), t), \text{ notice that } \nabla^2 f(x(t)) \dot{x}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \nabla f(x(t))$$

▶ Let *h* be the step size, $t_k = t_0 + kh$, $k \ge 0$. The forward Euler scheme of the (ISHD) is Explicit Inertial Gradient Algorithm with Correction (EIGAC)

$$\begin{cases} \frac{x_{k+1} - x_k}{h} = v_k - \beta(t_k) \nabla f(x_k), \\ \frac{v_{k+1} - v_k}{h} = -\frac{\alpha}{t} \left(v_k - \beta(t_k) \nabla f(x_k) \right) + (\dot{\beta}(t_k) - \gamma(t_k)) \nabla f(x_k) \end{cases}$$
(EIGAC)

Conditions for stable discretization

Theorem 2

Suppose the assumptions in Theorem 1 and (CVG-CDT) hold, $0 \le C_1$, $0 < C_2 \le 1/h - 1/t_0$, and $0 < C_3$ fulfill $|\dot{\beta}(t)| \le C_1\beta(t)$, $|\dot{\gamma}(t) - \ddot{\beta}(t)| \le C_2(\gamma(t) - \dot{\beta}(t))$, $\beta(t) \le C_3w(t)$. Given t_0 , s_0 , and h, the sequence $\{x_k\}_{k=0}^{\infty}$ is generated by (EIGAC) and $\bar{x}(t)$ is defined as

$$ar{x}(t) = x_k + rac{x_{k+1} - x_k}{h}(t - t_k), \qquad t \in [t_k, t_{k+1}).$$

Then, it holds $f(x_k) - f_{\star} \leq O(1/k)$ under the following stability condition:

$$\begin{split} &\Lambda(x,f) \geq \|\nabla^2 f(x)\|, \quad \alpha\beta(t)/t \leq \gamma(t) - \dot{\beta}(t) \leq \beta(t)/h, \qquad (\mathsf{STB-CDT}) \\ &\sqrt{\int_0^1 \Lambda((1-\tau)X(t,\Xi,f) + \tau \bar{x}(t),f) \, \mathrm{d}\tau} \leq \frac{\sqrt{\gamma(t) - \dot{\beta}(t)} + \sqrt{\gamma(t) - \dot{\beta}(t) - \frac{\alpha}{t}\beta(t)}}{\beta(t)}. \end{split}$$

Key technique: error decomposition

Local truncated error:

$$\varphi(t) = \begin{pmatrix} x(t+h) - x(t) \\ v(t+h) - v(t) \end{pmatrix} - h \begin{pmatrix} v(t) - \beta(t) \nabla f(x(t)) \\ -\frac{\alpha}{t} v(t) + \left(\frac{\alpha}{t} \beta(t) + \dot{\beta}(t) - \gamma(t)\right) \nabla f(x(t)) \end{pmatrix}$$

• Global error: $r_k = x(t_k) - x_k$, $s_k = v(t_k) - v_k$, and $e_k = (r_k, s_k)$

• We only need to control e_{k+1} , which has two resources

$$e_{k+1} = \begin{pmatrix} r_{k+1} \\ s_{k+1} \end{pmatrix} = \begin{pmatrix} x(t_k) \\ v(t_k) \end{pmatrix} + \begin{pmatrix} x(t_k+h) - x(t_k) \\ v(t_k+h) - v(t_k) \end{pmatrix} - \begin{pmatrix} x_k \\ v_k \end{pmatrix} - h\psi(t_k)$$
$$= \underbrace{\begin{pmatrix} I - h\beta(t_k)G(t_k) & hI \\ (\alpha\beta(t_k)/t_k + \dot{\beta}(t_k) - \gamma(t_k))G(t_k) & (1 - \alpha h/t_k)I \end{pmatrix}}_{W(t_k,G(t_k))} \underbrace{\begin{pmatrix} r_k \\ s_k \end{pmatrix}}_{e_k} + \varphi_{\Xi}(t_k)$$

where $G(t_k) = \int_0^1 \nabla^2 f(x(t_k) + \tau r_k) d\tau$. Abbreviate $W_k = W(t_k, G(t_k))$

Proof: bound the product of contraction factor

• We estimate $||e_{n+1}||$ using

$$\|e_{n+1}\| \leq \|W_n\| \|e_n\| + h\|\varphi(t_n)\| \leq \underbrace{\prod_{k=0}^n \|W_k\| \|e_0\|}_{0} + \|\varphi(t_n)\| + \sum_{k=0}^{n-1} \prod_{l=k+1}^n \|W_l\| \|\varphi(t_l)\|$$

• Matrix analysis and (STB-CDT) ensure that $||W_k|| = \rho(t_k) \le 1 - \alpha h/(2t_k)$

▶ Define the contraction factor $\rho(t) = ||W(t, G(t))||$. For $k \leq n$, we have

$$\begin{split} \prod_{l=k}^{n} \|W_{l}\| &= \prod_{l=k}^{n} \rho(t_{l}) = \exp\left(\sum_{l=k}^{n} \ln\left(\rho_{l} - 1 + 1\right)\right) \leq \exp\left(\sum_{l=k}^{n} (\rho_{l} - 1)\right) \\ &\leq \exp\left(-\sum_{l=k}^{n} \frac{\alpha h}{2t_{l}}\right) \leq \exp\left(-\frac{\alpha}{2} \int_{t_{k}}^{t_{n+1}} \frac{1}{t} \,\mathrm{d}t\right) = \left(\frac{t_{k}}{t_{n+1}}\right)^{\alpha/2} \end{split}$$

Proof: bound the summation of local truncated errors

• Set
$$M_1 = \max\{1 + (\alpha + 1)/t_0, C_2/h + (1 + \alpha/t_0)(1/h + C_1), \alpha/t_0 + 1/h + 1\}$$
. We have
 $\|\varphi(t)\| \le M_1 \int_t^{t+h} \left(\frac{\alpha}{t} \|\dot{x}(\tau)\| + \|\beta(\tau)\nabla f(x(\tau))\| + \beta(\tau)\|\nabla^2 f(x(\tau))\dot{x}(\tau)\|\right) d\tau$

• Using Cauchy inequality and Theorem 1, for certain M_3 , we have

$$\|\varphi(t)\| \le o(1/t)$$
 and $\sum_{k=0}^{n} t_{k}^{lpha/2} \|\varphi(t_{k})\| \le M_{3} t_{n}^{lpha/2-1/2}$

Combining these results, we have

$$\|e_{n+1}\| \le \|\varphi(t_n)\| + \sum_{k=0}^{n-1} \prod_{l=k+1}^n \|W_l\| \|\varphi(t_l)\| \le \sum_{k=0}^n \left(\frac{t_{k+1}}{t_{n+1}}\right)^{\alpha/2} \|\varphi(t_k)\| \le M_3 \frac{1}{\sqrt{t_{n+1}}}$$

Proof: derive the function value minimization rate

The function value can be decomposed as

$$f(x_{k}) - f_{\star} \leq |f(x_{k}) - f(x(t_{k}))| + |f(x(t_{k})) - f_{\star}|$$

$$\leq \underbrace{\|\nabla f(x(t_{k}))\|}_{\mathcal{O}(1/(t_{k}\beta(t_{k})))} \|e_{k}\| + \frac{1}{2} \underbrace{\left\|\int_{0}^{1} \nabla^{2} f(x(t_{k}) + \tau e_{k}) \, \mathrm{d}\tau\right\|}_{\mathcal{O}(1/\beta(t_{k}))} \underbrace{\|e_{k}\|^{2}}_{\mathcal{O}(1/t_{k})} + \frac{E(t_{0})}{t_{k}^{2}w(t_{k})}$$

• The rate is at least O(1/k), while the dominate term comes from the global error

Outline

Motivations

- 2 Conditions for stability-preserving discretization
- 3 Selecting the best coefficients using learning to optimize
- Omputation of the conservative gradients
- 5 Convergence analysis of StoPM

Numerical results

Stopping time: a differentiable continuous-time complexity

Definition 3 (Stopping Time)

Given the initial time t_0 , the initial value x_0 , the initial velocity $\dot{x}(t_0)$, the trajectory $X(\Xi, t, f)$ of the system (ISHD), and a tolerance ε , the stopping time of the criterion $\|\nabla f(x)\| \le \varepsilon$ is $T(\Xi, f) = \inf\{t \mid \|\nabla f(X(\Xi, t, f))\| \le \varepsilon, t \ge t_0\}$

Tackle the point-wise contraints using integration

• With $w(t), \delta(t)$ defined in (CVG-CDT), we introduce

$$p(x,\bar{x},\Xi,t,f) = \left[\beta(t)\sqrt{\int_0^1 \Lambda((1-\tau)x + \tau\bar{x},f) \,\mathrm{d}\tau} - \sqrt{\gamma(t) - \dot{\beta}(t)} - \sqrt{\gamma(t) - \dot{\beta}(t)} - \sqrt{\gamma(t) - \dot{\beta}(t) - \dot{\beta}(t)}\right]_+$$
$$q(\Xi,t) = \left[\gamma(t) - \dot{\beta}(t) - \beta(t)/h\right]_+ + \left[\dot{\beta}(t) + \alpha\beta(t)/t - \gamma(t)\right]_+$$
$$+ \left[\dot{\delta}(t) - \lambda tw(t)\right]_+ + \left[-\delta(t)\right]_+$$

▶ Setting $P, Q \leq 0$ ensures (CVG-CDT) and (STB-CDT) hold for f

$$P(\Xi,f) = \int_{t_0}^{T(\Xi,f)} p(X(t,\Xi,f),\bar{x}(t),\Xi,t,f) \,\mathrm{d}t, \quad Q(\Xi,f) = \int_{t_0}^{T(\Xi,f)} q(\Xi,t) \,\mathrm{d}t$$

A L2O framework for selecting the best coefficients

Induced distribution: Given a random variable ξ ~ P. We say P is the induced probability of the parameterized function f(·; ξ)

$$\mathbb{E}_{f}[T(\Xi, f)] = \int_{\xi} T(\Xi, f(\cdot; \xi)) \, \mathrm{d}\mathbb{P}(\xi) = \mathbb{E}_{\xi}[T(\Xi, f(\cdot; \xi))]$$

Framework: minimize the expectation of stopping time under conditions of convergence and stable discretization

$$\min_{\Xi} \quad \mathbb{E}_f[\mathcal{T}(\Xi, f)] \\ \text{s.t.} \quad \mathbb{E}_f[\mathcal{P}(\Xi, f)] \le 0, \quad \mathbb{E}_f[\mathcal{Q}(\Xi, f)] \le 0$$

▶ Parameterization: $\beta \rightarrow \beta_{\theta_1}, \gamma \rightarrow \gamma_{\theta_2}$. Set $\theta = (\alpha, \theta_1, \theta_2)$

Solving the L2O problem using exact penalty method

Given the penalty parameter ρ , the ℓ_1 exact penalty problem writes $\min_{\theta} \Upsilon(\theta) = \mathbb{E}_f[T(\theta, f)] + \rho \left(\mathbb{E}_f[P(\theta, f)] + \mathbb{E}_f[Q(\theta, f)]\right)$ $= \mathbb{E}_f[T(\theta, f) + \rho \left(P(\theta, f) + Q(\theta, f)\right)]$

Algorithm Stochastic Penalty Method (StoPM) for L2O problem

- 1: Input: initial weight $heta_0$, penalty coefficient ho, training dataset ${\cal F}$
- 2: while Not(Stopping Condition) do
- 3: Sample a function: $f_k \in \mathcal{F}$
- 4: Computing the gradients J_T, J_P and J_Q correspond to T, P and Q
- 5: Update variable: $\theta_{k+1} \leftarrow \theta_k \eta (D_T + D_P + D_Q)$
- 6: Update index: $k \leftarrow k+1$
- 7: end while
- 8: **Output:** the trained weight θ_{\star}

Outline

Motivations

- 2 Conditions for stability-preserving discretization
- Selecting the best coefficients using learning to optimize

Occupation of the conservative gradients

5 Convergence analysis of StoPM

Numerical results

Conservative gradient

- \blacktriangleright When parameterize α,β,γ using neural networks, they may be nonsmooth
- The output of *auto differentiation* in nonsmooth functions may not be Clarke subdifferentials, but they are certainly conservative gradients
- Consider the example:

$$f(s) = ([-s]_+ + s) - [s]_+ \equiv 0 \quad \Longrightarrow_{ ext{autograd using TensorFlow}} g(s) = egin{cases} 0 & (s
eq 0) \ 1 & (s = 0) \ \end{pmatrix}$$

g is not the Clarke subdifferential of f but a conservative gradient

- Conservative gradient generalizes subdifferentials while preserving chain rule
- Ψ is termed the conservative Jacobian (gradient if m = 1) of π if and only if $\frac{\mathrm{d}}{\mathrm{d}\iota}\pi(r(\iota)) = A\dot{r}(\iota), \quad \text{for all } A \in \Psi(r(\iota)), \text{ for almost all } \iota \in [0, 1]$

for any absolutely continuous curve $r:[0,1]
ightarrow \mathbb{R}^d$

1

Differentiate through the ODE flow of (ISHD): $\partial X / \partial \theta$

• Reformulate (ISHD) as a first-order system (1) with a parameterized right-hand-side term ψ :

$$\psi \colon \mathbb{R}^{2n+1+p} \to \mathbb{R}^{2n}, \quad (x, v, t, \theta) \mapsto \psi_{\theta}(x, v, t).$$

Denote the flow of (1) with parameterized ψ as $X(x_0, v_0, \theta, t)$

- Denote $D^{\psi} : \mathbb{R}^{2n+1+p} \rightrightarrows \mathbb{R}^{2n \times (2n+1+p)}$ as a conservative Jacobian of ψ with respect to (x, v, t, θ) . The coordinate projection (partial derivative) writes $D_{x,v}^{\psi} = \prod_{x,v} D^{\psi}, D_t^{\psi} = \prod_t D^{\psi}$ and $D_{\theta}^{\psi} = \prod_{\theta} D^{\psi}$
- Applying the general result to the first-order system (1): $\theta \mapsto A(t_0)$ is a conservative Jacobian of $\theta \to X(x_0, v_0, \theta, t_1)$ (smooth version: $\partial X/\partial \theta$)

$$\dot{\mathcal{A}}(t)=D_{x,
u}^\psi(t)\mathcal{A}(t)+D_ heta^\psi(t),\quad \mathcal{A}(t_1)=\mathtt{0}_{2n imes p}\quad ext{for all }t\in[t_0,t_1]$$

Smooth version:

$$\frac{\partial X}{\partial \theta} = \int_{t_0}^{t_1} \frac{\partial \psi_{\theta}}{\partial x} \frac{\mathrm{d}X}{\mathrm{d}\theta} + \frac{\partial \psi_{\theta}}{\partial \theta} \,\mathrm{d}t$$

Evaluate the derivative of stopping time: $\nabla_{\theta} T(\theta, f)$

► Take limit by continuity: $\|\nabla f(X(T(\theta, f), f, \theta))\|^2 - \varepsilon^2 \equiv 0$

Implicit function theorem (valid in nonsmooth case):

$$\nabla f(X)^{\top} \nabla^2 f(X) \left(\left. \frac{\partial X}{\partial t} \right|_{t=T} \nabla_{\theta} T(\theta, f) + \frac{\partial X}{\partial \theta} \right) = 0$$

where $T = T(\theta, f), X = X(T(\theta, f), f, \theta)$

Invoking the first-order form of (ISHD):

$$\frac{\partial X}{\partial t}\Big|_{t=T} = \dot{x}(T) = v(T) - x(T) - \beta(T)\nabla f(x(T))$$

where $x(t) = X(t, f, \theta)$

The derivative:

$$\nabla_{\theta} T(\theta, f) = \left(\nabla f(X)^{\top} \nabla^2 f(X) \left(v(T) - X - \beta(T) \nabla f(X) \right) \right)^{-1} \nabla f(X)^{\top} \nabla^2 f(X) \frac{\partial X}{\partial \theta}$$

Conservative gradient of the constraints

► Recap:

$$P(\theta, f) = \int_{t_0}^{T(\theta, f)} p(X(t, \theta, f), \bar{x}(t), \theta, t, f) \, \mathrm{d}t, \quad Q(\theta, f) = \int_{t_0}^{T(\theta, f)} q(\theta, t) \, \mathrm{d}t$$

Applying the chain rule gives

$$\frac{\mathrm{d}P(\theta,f)}{\mathrm{d}\theta} = \int_{t_0}^{T(\theta,f)} \frac{\partial\psi_{\theta}(s(t),t,f)}{\partial\theta} w(t) + \frac{\partial p(x(t),\bar{x}(t),\theta,t,f)}{\partial\theta} \mathrm{d}t \\ + p(x(T),\bar{x}(T),\theta,T,f) \frac{\mathrm{d}T(\theta,f)}{\mathrm{d}\theta} \\ \frac{\mathrm{d}Q(\theta,f)}{\mathrm{d}\theta} = \int_{t_0}^{T(\theta,f)} \frac{\mathrm{d}q(\theta,t)}{\mathrm{d}\theta} \mathrm{d}t + q(\theta,T) \frac{\mathrm{d}T(\theta,f)}{\mathrm{d}\theta}$$

where $\bar{x}(\cdot)$ is the interpolation of $\{x_k\}$ defined in Theorem 2, $w(\cdot)$ is the solution of

$$-\begin{pmatrix}\frac{\partial p(x(t),\bar{x}(t),\theta,t,f)}{\partial x}\\0_{n\times 1}\end{pmatrix}-\frac{\partial \psi_{\theta}(s(t),t,f)}{\partial s}w(t)=\dot{w}(t),\quad w(T(\theta,f))=0_{2n\times 1}$$

Clarke subdifferential of the point-wise maximal function

when $\Lambda(f, x) = \lambda_{\max}(\nabla^2 f(x))$. This enables the evaluation of $\frac{\partial p}{\partial \theta}, \frac{\partial p}{\partial x}$

Outline

Motivations

- 2 Conditions for stability-preserving discretization
- Selecting the best coefficients using learning to optimize
- Omputation of the conservative gradients
- **5** Convergence analysis of StoPM

Numerical results

Criteria for D-stationarity using directional derivative

- ▶ Let Υ be Lipschitz continuous near $\bar{\theta}$
- ▶ The *D*-directional derivative of Υ at $\overline{\theta}$ along a nonzero vector ϑ :

$$\Upsilon^{\circ}(\bar{ heta}; \vartheta) \triangleq \limsup_{\tau \downarrow 0} D^{\Upsilon}(\bar{ heta} + \tau \vartheta)$$

- *D*-stationarity: $0 \in \partial \Upsilon(\theta)$
- ▶ Since *D* has closed convex graph, θ is a *D*-stationary point of Υ if and only if $\Upsilon^{\circ}(\theta; \vartheta) \ge 0$ for all $\vartheta \in \mathbb{R}^{d_{\theta}}$

Precludes infeasible stationary point using sufficient decrease condition

 \blacktriangleright Given the training dataset $\mathcal F$, we denote the residual function as

 $R(\theta) = \mathbb{E}_f[P(\theta, f) + Q(\theta, f)]$

▶ This function measures the constraints violation. The feasible set is defined by

 $S = \{ heta \mid P(heta, f) \leq 0, Q(heta, f) \leq 0, orall f \in \mathcal{F} \}$

Assumption 1 (Uniform sufficient decrease condition)

For each infeasible point θ , i.e. $\theta \notin S$, there exists a nonzero vector ϑ , such that $R^{\circ}(\theta; \vartheta) \leq -c \|\vartheta\|$. Here the constant c is uniform for each θ .

Theorem 4

Suppose $\mathbb{E}_f[T(\theta, f)]$ is globally Lipschitz continuous with Lipschitz constant L_T . Let Assumption 1 hold. Given the penalty parameter $\rho > L_T/c$, any infeasible point of the penalty function Υ can not be a D-stationary point.

Sufficient decrease condition precludes infeasible stationary point

Consider the penalty function

$$\Upsilon(\theta) = \mathbb{E}_f \left[T(\theta, f) + \rho(P(\theta, f) + Q(\theta, f)) \right]$$

For any infeasible point θ , using Assumption 1, there must exists a direction ϑ , such that $\Upsilon^{\circ}(\theta; \vartheta) = \mathbb{E}_{f}[T(\cdot, f)]^{\circ}(\theta; \vartheta) + \rho R^{\circ}(\theta, \vartheta) \leq L_{T} \|\vartheta\| - c\rho \|\vartheta\| < 0$

▶ The criteria of *D*-stationary point ensures that θ cannot be a *D*-stationary point of Υ

SGD converges with (nonsmooth) auto-differentiation: Assumptions

Assumption 2 (Assumptions of the SGD)

1. The step sizes $\{\eta_k\}_{k\geq 1}$ satisfy

$$\eta_k \ge 0, \quad \sum_{k=1}^\infty \eta_k = \infty, \quad \text{ and } \quad \sum_{k=1}^\infty \eta_k^2 < \infty.$$

- 2. Almost surely, the iterates $\{\theta_k\}_{k\geq 1}$ are bounded, i.e., $\sup_{k\geq 1} \|\theta_k\| < \infty$.
- 3. $\{\xi_k\}_{k\geq 1}$ is a uniformly bounded difference martingale sequence with respect to the increasing σ -fields

$$\mathscr{F}_{k} = \sigma(\theta_{j}, \varrho_{j}, \xi_{j} \colon j \leq k).$$

In other words, there exists a constant $M_{\xi} > 0$ such that

$$\mathbb{E}[\xi_k \mid \mathscr{F}_k] = 0 \quad and \quad \mathbb{E}[\|\xi_k\|^2 \mid \mathscr{F}_k] \le M_{\xi} \quad for \ all \quad k \ge 1.$$

SGD converges with (nonsmooth) auto-differentiation

Assumption 3

The complementary of $\{\Upsilon(\theta) \mid 0 \in D^{\Upsilon}(\theta)\}$ is dense in \mathbb{R} .

Theorem 5 (SGD converges using conservative gradient)

Suppose that Assumptions 2 and 3 hold. Then every limit point of $\{\theta_k\}_{k\geq 1}$ is stationary and the function values $\{\Upsilon(\theta_k)\}_{k\geq 1}$ converge.

Theorem 6 (Convergence guarantee for Algorithm 1)

Suppose Assumption 1, 2 and 3 hold, $\{\theta_k\}_{k\geq 1}$ is generated by Algorithm 1. Then almost surely, every limit point θ_* of $\{\theta_k\}_{k\geq 1}$ satisfies $\theta_* \in S$, $0 \in D^{\Upsilon}(\theta_*)$ and the sequence $\{\Upsilon(\theta_k)\}_{k\geq 1}$ converges.

Outline

Motivations

- 2 Conditions for stability-preserving discretization
- Selecting the best coefficients using learning to optimize
- Omputation of the conservative gradients
- 5 Convergence analysis of StoPM

6 Numerical results

Setting and datasets

Consider the logistic regression problem defined by

$$\min_{x\in\mathbb{R}^n} f_{\mathscr{D}}(x) = rac{1}{|\mathscr{D}|} \sum_{(a_i,b_i)\in\mathscr{D}} \log(1+\exp(-b_i\langle a_i,x
angle)),$$

where \mathscr{D} is a subset of a given dataset Σ and $\{a_i, b_i\} \in \mathbb{R}^n \times \{0, 1\}, i \in [|\mathscr{D}|]$

► The datasets are listed as below

Dataset	n	$N_{ m train}$	$N_{\rm test}$	Separable
a5a	123	6,414	26, 147	No
w3a	300	4,912	44,837	No
mushrooms	112	3,200	4,924	Yes
covtype	54	102,400	478,612	No
phishing	68	8,192	2,863	No
separable	101	20,480	20,480	Yes

Training results

(a) Stopping time on logistic regression

(b) Penalty on logistic regression

Figure: The training process in different tasks.

Testing: Compared methods

▶ **GD**. $x_{k+1} = x_k - h\nabla f(x_k)$. We set the stepsize as h = 1/L

NAG. We choose h = 1/L and employ the version for convex functions

$$y_{k+1} = x_k - h \nabla f(x_k), \quad x_{k+1} = y_{k+1} + \frac{k-1}{k+2}(y_{k+1} - y_k)$$

EIGAC. Explicit inertial gradient algorithm with correction. We provide two versions of EIGAC: default coefficients

$$lpha=6, \quad eta(t)=\left(4/h-2lpha/t
ight)/L, \quad ext{and} \quad eta(t)=h\gamma(t)$$

and the coefficients learned by Algorithm 1

Testing: Compared methods

 IGAHD. Inertial gradient algorithm with Hessian-driven damping. This method is obtained by applying a NAG inspired time discretization of

$$\ddot{x}(t) + rac{lpha}{t}\dot{x}(t) + eta
abla^2 f(x(t))\dot{x}(t) + \left(1 + rac{eta}{t}
ight)
abla f(x(t)) = 0$$

Let s=1/L. In each iteration, setting $lpha_k=1-lpha/k$, the method performs

$$\begin{cases} y_k = x_k + \alpha_k \left(x_k - x_{k-1} \right) - \beta \sqrt{s} \left(\nabla f \left(x_k \right) - \nabla f \left(x_{k-1} \right) \right) - \frac{\beta \sqrt{s}}{k} \nabla f \left(x_{k-1} \right) \\ x_{k+1} = y_k - s \nabla f \left(y_k \right) \end{cases}$$

IGAHD owns $\mathcal{O}(1/k^2)$ convergence rate when $0 \leq eta < 2/\sqrt{s}$ and $s \leq 1/L$

Testing results

References I

- Hedy Attouch et al. "First-order optimization algorithms via inertial systems with Hessian-driven damping". In: *Math. Program.* 193.1 (2022), pp. 113–155. ISSN: 0025-5610,1436-4646.
- [2] Ying Cui, Junyi Liu, and Jong-Shi Pang. "Nonconvex and nonsmooth approaches for affine chance-constrained stochastic programs". In: Set-Valued Var. Anal. 30.3 (2022), pp. 1149–1211. ISSN: 1877-0533,1877-0541.
- Damek Davis et al. "Stochastic subgradient method converges on tame functions". In: Found. Comput. Math. 20.1 (2020), pp. 119–154. ISSN: 1615-3375,1615-3383.
- [4] Hao Luo and Long Chen. "From differential equation solvers to accelerated first-order methods for convex optimization". In: *Math. Program.* 195.1-2 (2022), pp. 735–781. ISSN: 0025-5610,1436-4646.
- [5] Bin Shi et al. "Understanding the acceleration phenomenon via high-resolution differential equations". In: *Math. Program.* 195.1-2 (2022), pp. 79–148. ISSN: 0025-5610,1436-4646.

[6] Weijie Su, Stephen Boyd, and Emmanuel J. Candès. "A differential equation for modeling Nesterov's accelerated gradient method: theory and insights". In: *J. Mach. Learn. Res.* 17 (2016), Paper No. 153, 43. ISSN: 1532-4435,1533-7928.
[7] Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. "A variational perspective on accelerated methods in optimization". In: *Proc. Natl. Acad. Sci. USA* 113.47 (2016), E7351–E7358. ISSN: 0027-8424,1091-6490.

Many Thanks For Your Attention!