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Mathematical Formulation: LP Problem

General LP Problem:
min
x∈Rn

c⊤x

s.t. ℓc ≤ Ax ≤ uc

ℓv ≤ x ≤ uv

Deriving the Lagrangian:
▶ Introduce dual variables for constraints to form unconstrained problem
▶ Rewrite constraints: Ax − uc ≤ 0, ℓc − Ax ≤ 0, x − uv ≤ 0, ℓv − x ≤ 0
▶ Associate non-negative multipliers y−, y+, r−, r+ with each inequality

Lagrangian Function:

L(x , y−, y+, r−, r+) = c⊤x + (y−)⊤(Ax − uc) + (y+)⊤(ℓc − Ax) (1)
+ (r−)⊤(x − uv ) + (r+)⊤(ℓv − x) (2)

where all multipliers are non-negative
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Deriving the Dual Problem

Derivation: Group x terms and form the dual function

L(x , y−, y+, r−, r+) =x⊤(c + A⊤(y− − y+) + (r− − r+)) (3)
− (y−)⊤uc + (y+)⊤ℓc − (r−)⊤uv + (r+)⊤ℓv (4)

The minimum over x is −∞ unless c + A⊤(y− − y+) + (r− − r+) = 0

Dual Problem: Using substitutions y = y+ − y− and r = r+ − r−

max
y∈Rm,r∈Rn

− (y−)⊤uc + (y+)⊤ℓc − (r−)⊤uv + (r+)⊤ℓv

s.t. c − A⊤y = r
y−, y+, r−, r+ ≥ 0
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Dual Problem Formulation

Simplified notation: Define p(y ; ℓ, u) := u⊤y+ − ℓ⊤y− where y+ = max(y , 0) and
y− = max(−y , 0)

Rewriting the dual:

max
y∈Rm,r∈Rn

− p(−y ; ℓc , uc) − p(−r ; ℓv , uv )

s.t. c − A⊤y = r
y ∈ Y, r ∈ R

Dual feasible sets Y and R: Based on constraint types

Yi :=


{0} (ℓc)i = −∞, (uc)i = ∞ (unconstrained)
R− (ℓc)i = −∞, (uc)i ∈ R (upper bound)
R+ (ℓc)i ∈ R, (uc)i = ∞ (lower bound)
R otherwise (both upper and lower bounds)

Ri :=


{0} (ℓv )i = −∞, (uv )i = ∞
R− (ℓv )i = −∞, (uv )i ∈ R
R+ (ℓv )i ∈ R, (uv )i = ∞
R otherwise
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Saddle Point Formulation of LP

▶ Keeping the bounds on x , we obtain the Lagrangian function:

L(x , y−, y+) = c⊤x + (y−)⊤(Ax − uc) + (y+)⊤(ℓc − Ax)

▶ Using the notation y = y+ − y− and the function p(y ; ℓ, u) = u⊤y+ − ℓ⊤y−:

(y−)⊤(Ax − uc) + (y+)⊤(ℓc − Ax) = −((y−)⊤uc − (y+)⊤ℓc) + (y− − y+)⊤(Ax)
= −p(−y ; ℓc , uc) − y⊤(Ax)

▶ Then the saddle point problem is:

min
x

max
y

{c⊤x + y⊤(Ax) − p(−y ; ℓc , uc)} s.t. ℓv ≤ x ≤ uv

Final saddle point formulation:

min
x∈X

max
y∈Y

L(x , y) := c⊤x + y⊤Ax − p (y ; −uc , −ℓc)

where X := {x ∈ Rn : ℓv ≤ x ≤ uv }
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Generic Convex-Concave Saddle Point Problems

General Form:
min
x∈X

max
y∈Y

L(x , y) = ⟨Kx , y⟩ + g(x) − f ∗(y)

Key components:
▶ K : Linear operator (matrix) mapping primal to dual space
▶ g(x): Convex function (often includes constraints on x)
▶ f ∗(y): Convex conjugate of function f (handles dual constraints)

Convex Conjugate Definition: For any convex function f

f ∗(y) = sup
x

{⟨x , y⟩ − f (x)}

This transforms constraints into penalties in the optimization
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PDHG: Abstract Form

Primal-Dual Hybrid Gradient Algorithm:

xk+1 = proxτg(xk − τK ∗yk) (5)
yk+1 = proxσf ∗(yk + σK (2xk+1 − xk)) (6)

Proximal Operator: A generalization of projection

proxτg(z) = arg min
x∈X

{
g(x) + 1

2τ
∥x − z∥2

}
Moreau Decomposition: Allows computing proximal operator of f ∗ using f

proxσf ∗(y) = y − σ · proxf /σ(y/σ)

This is crucial for implementing PDHG efficiently without explicitly forming the conjugate
function!
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Applying PDHG to LP Problems

For LP saddle point problem:

min
x∈X

max
y∈Y

L(x , y) := c⊤x + y⊤Ax − p (y ; −uc , −ℓc)

We identify:
▶ K = A (linear constraint matrix)
▶ g(x) = c⊤x + δX (x) (objective + variable bounds)
▶ f ∗(y) = p(y ; −uc , −ℓc) (constraint bounds)

Computing proximal operators:

proxτg(z) = projX (z − τc) (7)
proxσf ∗(y) = y − σ · proj[−uc ,−ℓc ](y/σ) (8)

where projections enforce the constraints efficiently
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PDHG Algorithm for LP

PDHG iterations for LP:

xk+1 = proj[ℓv ,uv ](xk − τ(c − A⊤yk)) (9)
ỹk+1 = yk − σA(2xk+1 − xk) (10)
yk+1 = ỹk+1 − σproj[−uc ,−ℓc ](ỹk+1/σ) (11)

Key benefits:
▶ Only requires matrix-vector products (Ax and A⊤y)
▶ Projections computed element-wise (highly parallelizable)
▶ No matrix factorization or linear systems to solve
▶ Memory-efficient for very large-scale problems
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Convergence Theory for PDHG on LP

Step Size Parameterization:
▶ τ = η/ω and σ = ωη with η ∈ (0, ∞), ω ∈ (0, ∞)

▶ Convergence guaranteed when η < 1/∥A∥2

▶ ω: primal weight, controls scaling between primal and dual iterates

Special Norm for Convergence Analysis:

∥z∥ω :=

√
ω∥x∥2

2 + ∥y∥2
2

ω

for z = (x , y) - Used in convergence theory, restart criteria, and primal-dual balance
Linear convergence: Under certain conditions, PDHG converges linearly for LP:

∥zk − z∗∥ω ≤ C(1 − γ)k

where γ ∈ (0, 1) depends on problem structure
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Problems with Classical Solvers for Large-Scale LP

▶ Simplex Method:
▶ Iterations potentially exponential in problem size
▶ Poor parallelization on modern hardware

▶ Interior Point Methods (IPMs):
▶ Memory requirements: O(nnz(A)) for matrix factorization
▶ Often exceeds 1TB for problems with billions of nonzeros

▶ First-Order Methods:
▶ Low memory requirements
▶ Highly parallelizable matrix-vector operations
▶ But historically struggle with achieving high accuracy
▶ Small constraint violations can lead to significant errors
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First-Order Methods for LP

▶ State-of-the-art First-Order Method Solvers:
▶ SCS: ADMM-based solver with homogeneous self-dual embedding
▶ OSQP: ADMM-based for convex quadratic programming
▶ ECLIPSE: Gradient descent on smoothed dual formulation
▶ ABIP/ABIP+: Interior-point solvers using ADMM

▶ PDHG (Primal-Dual Hybrid Gradient) Advantages:
▶ Requires only matrix-vector products: Ax and A⊤y
▶ No matrix factorization or systems of equations
▶ Form of operator splitting (related to ADMM)
▶ Linear convergence for LP established in theory
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PDLP: Main Algorithm

Algorithm PDLP (after preconditioning and presolve)
1: Input: An initial solution z0,0

2: Initialize outer loop counter n← 0, total iterations k ← 0
3: Initialize step size η̂0,0 ← 1/∥A∥∞, primal weight ω0 ← InitializePrimalWeight
4: repeat
5: t ← 0
6: repeat
7: zn,t+1, ηn,t+1, η̂n,t+1 ← AdaptiveStepOfPDHG(zn,t , ωn, η̂n,t , k)
8: z̄n,t+1 ← 1∑t+1

i=1
ηn,i

∑t+1
i=1 ηn,i zn,i

9: zn,t+1
c ← GetRestartCandidate(zn,t+1, z̄n,t+1, zn,0)

10: t ← t + 1, k ← k + 1
11: until restart or termination criteria holds
12: restart the outer loop. zn+1,0 ← zn,t

c , n← n + 1
13: ωn ← PrimalWeightUpdate(zn,0, zn−1,0, ωn−1)
14: until termination criteria holds
15: Output: zn,0

Practical Note: Restart criteria checked every 64 iterations to reduce overhead.
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Practical Improvements for PDHG

▶ Adaptive step sizes: Dynamic adjustment based on convergence conditions

▶ Restart strategies: Reset algorithm when progress slows

▶ Primal weight updates: Balance progress in primal and dual spaces

▶ Diagonal preconditioning: Rescale problem for better numerical properties

▶ Infeasibility detection: Efficiently identify infeasible problems

▶ Multithreading: Exploit parallel computing architectures
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Adaptive Step Size: Key Insights

Traditional PDHG: Fixed step size η = 1
∥A∥2

▶ Overly pessimistic

▶ Requires estimation of ∥A∥2

PDLP Approach: Adaptive step size based on convergence condition
▶ Calculate maximum allowable step size:

η̄ = ∥zk+1 − zk∥2
ω

2(yk+1 − yk)⊤A(xk+1 − xk)

▶ Stepsize selection process:
▶ Initialize η0,0 = 1/∥A∥∞
▶ For each step, try current η and compute η̄
▶ Accept step if η ≤ η̄; otherwise reduce η and retry
▶ Update η′ for next iteration with carefully designed formula
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Adaptive Step Size Algorithm

Algorithm One step of PDHG using our step size heuristic
1: function AdaptiveStepOfPDHG(zn,t , ωn, η̂n,t , k)
2: (x , y)← zn,t , η ← η̂n,t

3: for i = 1, . . . ,∞ do
4: x ′ ← projX (x − η

ωn (c − A⊤y))
5: y ′ ← y − A(2x ′ − x)− ηωnproj[ℓc ,uc ]

(
(ηωn)−1y − A(2x ′ − x)

)
6: η̄ ← ∥(x′−x,y′−y)∥2

ωn
2(y′−y)⊤A(x′−x)

7: η′ ← min
(

(1− (k + 1)−0.3)η̄, (1 + (k + 1)−0.6)η
)

8: if η ≤ η̄ then
9: return (x ′, y ′), η, η′

10: end if
11: η ← η′

12: end for
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Adaptive Restarts: Normalized Duality Gap - Properties and Advantages

Definition (From Applegate et al. 2023):

ρn
r (z) := 1

r max
(x̂ ,ŷ)∈{ẑ∈Z :∥ẑ−z∥ωn≤r}

{L(x , ŷ) − L(x̂ , y)}

Lagrangian: L(x , y) = c⊤x + y⊤Ax − p(y ; −uc , −ℓc)
Key Properties:
▶ Unlike standard duality gap, always finite (bounded by search radius)

▶ Zero if and only if solution is optimal

▶ Computable in linear time

▶ Provides a meaningful measure of progress toward optimality
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Adaptive Restart Criteria - Detailed

Notation for Convenience:

µn(z , zref) := ρn
∥z−zref∥ωn (z)

where zref is a user-chosen reference point (typically start of current restart).
PDLP Parameters:

βnecessary = 0.9, βsufficient = 0.1, βartificial = 0.5

Criterion 1: Sufficient Decay

µn(zn,t+1
c , zn,0) ≤ βsufficientµn(zn,0, zn−1,0)

▶ Guarantees linear convergence on LP problems
▶ Threshold of 10% of initial gap is aggressive
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Adaptive Restart Criteria - Detailed

Criterion 2: Necessary Decay + No Progress

µn(zn,t+1
c , zn,0) ≤ βnecessaryµn(zn,0, zn−1,0)

and µn(zn,t+1
c , zn,0) > µn(zn,t

c , zn,0)

▶ Inspired by restart schemes for accelerated gradient descent
▶ Triggers restart when progress begins to stall

Criterion 3: Long Inner Loop
t ≥ βartificialk

▶ Ensures primal weight is updated frequently enough

▶ Prevents a bad initial primal weight from causing long-term stalling
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Restart Mechanism - Implementation Details

Restart Candidate Selection:

GetRestartCandidate(zn,t+1, z̄n,t+1, zn,0) =
{

zn,t+1 if µn(zn,t+1, zn,0) < µn(z̄n,t+1, zn,0)
z̄n,t+1 otherwise

Implementation Note:
▶ Restart criteria evaluated every 64 iterations to reduce overhead

▶ Makes minimal impact on total iteration count

▶ Running averages z̄n,t+1 weighted by step sizes
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Primal Weight Updates

Motivation: Balance progress in primal and dual spaces
▶ The ω-norm balances primal and dual iterates:

∥z∥ω =

√
ω∥x∥2

2 + ∥y∥2
2

ω

▶ For optimal convergence, we want equal progress in both spaces:

∥(xn,t − x∗, 0)∥ωn = ∥(0, yn,t − y∗)∥ωn

▶ This yields the ideal primal weight:

ωn = ∥yn,t − y∗∥2
∥xn,t − x∗∥2
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Primal Weight Update Algorithm

Implementation:
▶ Since x∗ and y∗ are unknown, estimate using consecutive iterates:

∆n
x = ∥xn,0 − xn−1,0∥2, ∆n

y = ∥yn,0 − yn−1,0∥2

▶ Apply log-scale exponential smoothing to avoid oscillations:

ωn = exp
(

θ log
(∆n

y
∆n

x

)
+ (1 − θ) log(ωn−1)

)
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Primal Weight Update Algorithm

Algorithm Primal weight update
1: function PrimalWeightUpdate(zn,0, zn−1,0, ωn−1)
2: ∆n

x = ∥xn,0 − xn−1,0∥2, ∆n
y = ∥yn,0 − yn−1,0∥2

3: if ∆n
x > ε0 and ∆n

y > ε0 then

4: return exp
(

θ log
(

∆n
y

∆n
x

)
+ (1− θ) log(ωn−1)

)
5: else
6: return ωn−1

7: end if

Key innovation: Updates only occur after restarts
▶ Allows larger weight changes without causing instability

▶ Focuses on balancing distance traveled rather than residuals

▶ Significantly improves performance compared to per-iteration updates

25 / 81



Diagonal Preconditioning

Approach: Rescale constraint matrix to Ã = D1AD2
▶ Transforms variables: x̃ = D−1

2 x

▶ Transforms constraints: ℓ̃c = D1ℓc , ũc = D1uc

▶ Transforms bounds: ℓ̃v = D−1
2 ℓv , ũv = D−1

2 uv

PDLP Implementation: Hybrid approach
▶ Apply 10 iterations of Ruiz scaling:

(D1)jj =
√

∥Aj,·∥∞, (D2)ii =
√

∥A·,i∥∞

▶ Followed by Pock-Chambolle scaling:

(D1)jj =
√

∥Aj,·∥1, (D2)ii =
√

∥A·,i∥1
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Infeasibility Detection

Challenge: Efficiently identify infeasible LP instances

PDLP Approach: Check multiple certificate candidates
▶ Difference of consecutive iterates

▶ Normalized iterates

▶ Normalized running average (since last restart)

Advantages:
▶ Minimal computational overhead

▶ Different sequences converge at different rates depending on problem geometry

▶ Checking all three is often faster than relying on just one
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Practical Performance

Implementation Details:
▶ Evaluate restart/termination criteria only every 64 iterations

▶ Check termination at start and after numerical errors

▶ Implemented in C++, available in Google OR-Tools

Success Metrics:
▶ Ability to solve large-scale problems with billions of nonzeros

▶ Strong performance on sparse problems with complex constraints

▶ Effective utilization of parallel computing resources
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Theoretical Guarantees for Enhancements

▶ PDLP enhancements are motivated by theoretical insights, but not all preserve
theoretical guarantees

▶ Convergence guarantees:
▶ Adaptive step size: No formal proof of convergence yet
▶ Primal weight updates: Practical benefits observed empirically
▶ Adaptive restarts: Proven to maintain convergence in simpler settings

▶ Infeasibility detection:
▶ Theory developed for non-restarted PDHG iterations
▶ Multiple certificate candidates improve practical performance

▶ Balance: PDLP strikes a careful balance between theoretical foundations and practical
performance
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The Feasibility Challenge for First-Order Methods

Problem with First-Order Methods:
▶ Traditional FOMs converge slowly to high-precision solutions

▶ Small constraint violations can lead to significant errors

▶ Example: SCS solver with tolerance 10−4 had 13% error in objective

▶ Tighter tolerance (10−8) failed to converge in 1 hour
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Feasibility Polishing: Key Insights

Key Insight: In practice, approximately optimal but exactly feasible solutions are often
acceptable:
▶ Integer programming solvers commonly terminate at small optimality gaps (e.g., 1%)

▶ Many applications require strict feasibility but can tolerate small optimality gaps

▶ First-order methods need a mechanism to achieve tight feasibility without sacrificing
speed

Goal: Find solutions with:
▶ Extremely small feasibility violations (e.g., 10−8)

▶ Moderate duality gaps (e.g., 1%)

▶ Much faster than solving to full optimality
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Feasibility Polishing: Key Insights

Two Fundamental Observations:
▶ Insight 1: PDHG converges much faster for feasibility problems than optimality

problems

Feasibility problem: min
x∈Rn

0 subject to constraints

▶ Insight 2: Starting from an approximately optimal solution, PDHG will find a nearby
feasible solution
▶ PDHG has non-increasing distance to optimal solutions

▶ Warm-starting from approximately optimal point preserves objective quality
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Feasibility Polishing: Three-Phase Algorithm

Algorithm Feasibility Polishing Algorithm
1: Run PDLP on original LP. After k iterations, if relative gap < ϵrel-gap, pause.
2: Run PDLP on primal feasibility problem, starting from (xk , 0):

▶ Run for k/8 iterations or until primal violations < 10−8

▶ If not converged, return to step 1
▶ Otherwise, let x̃ be the output solution

3: Run PDLP on dual feasibility problem, starting from (0, yk):
▶ Run for k/8 iterations or until dual violations < 10−8

▶ Let ỹ be the output dual solution
4: Check if (x̃ , ỹ) meets termination criteria, if not return to step 1

Implementation Details:
▶ Primal feasibility problem focuses solely on satisfying constraints

▶ Dual feasibility problem focuses on satisfying optimality conditions

▶ Warm-starting from nearly optimal solution preserves objective quality
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Practical Benefits of Feasibility Polishing

Dramatic Performance Improvement:
▶ Convergence speed: Orders of magnitude faster than solving to full optimality

▶ Memory efficiency: No additional memory requirements

▶ Solution quality: Maintains excellent objective values while achieving exact feasibility

Cost-Benefit Analysis:
▶ Extra iterations on simpler problems (feasibility) vs. extra iterations on harder problem

(optimality)

▶ Solving feasibility is significantly faster than forcing high-precision convergence

▶ Trade-off: Allows controllable balance between feasibility and optimality
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PDLP Implementation: From Research to Practice

C++ Implementation in Google OR-Tools:
▶ First released with OR-Tools version 9.3 in March 2022

▶ Designed for production deployments

▶ Accessible via OR-Tools framework and CVXPY

Key Improvements Over Research Prototype:
▶ Multithreading: Parallelized operations for matrix-vector products, projections, etc.

▶ Sharded implementation divides data among threads
▶ Default: 4× more shards than threads for balanced workload

▶ General LP form: Supports both lower and upper bounds on constraints

▶ Presolve: Integrated presolving capabilities from GLOP (OR-Tools simplex solver)
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PDLP: Multithreading Performance

Thread Scaling Results:
▶ Almost 8× speedup with 32 threads on

large instances
▶ Effective parallelization of:

▶ Sparse matrix-vector operations
▶ Vector-vector operations
▶ Projections and norms

▶ Benefits increase with problem size
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Speed Up vs Number of Threads
Actual Speed Up
Linear Speed Up

Current Limitations:
▶ Thread synchronization overhead
▶ Inefficient memory bandwidth usage
▶ Research opportunities: Apply SpMV optimization techniques
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Large-Scale Benchmark Suite

Motivation & Design:
▶ Designed to challenge or exceed state-of-the-art solver capabilities

▶ Diverse problem domains and structures

▶ All instances fit in memory of high-end machines (1TB)

▶ Smallest: 125M nonzeros; Largest: 6.3B nonzeros

Instance Scaling:
▶ Objective vectors standardized to {-1, 0, 1}, right-hand sides standardized to {-1, 0, 1}

with special handling for two-sided constraints

▶ Generator: https://github.com/ohinder/large-scale-LP-test-problems

▶ Public availability: https://www.oliverhinder.com/large-scale-lp-problems
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Benchmark Instance Details

Problem Domains:
▶ Statistical matching: 2.76B nonzeros (design-match)

▶ TSP relaxations: 475M—6.3B nonzeros (tsp-gaia-10m, tsp-gaia-100m)

▶ PDE-constrained optimization: 125M nonzeros (heat-source-easy/hard)

▶ Production-inventory: 500M nonzeros

▶ Quadratic assignment relaxations: 198M—1B nonzeros (qap-wil-100, qap-tho-150)

▶ Shipping network optimization: 629M—689M nonzeros

▶ Supply chain optimization: 403M nonzeros

Challenge: Most instances beyond reach of classical methods
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Experimental Setup

Hardware:
▶ AMD EPYC 7302 (16 cores, 32 threads, 256GB RAM)

▶ Intel Xeon Platinum 8352Y (32 cores, 64 threads, 1TB RAM)

▶ PDLP: 16 threads on 256GB machine, 32 threads on 1TB machine

▶ Gurobi: Default thread settings (auto-tuned to machine)

▶ First ran a solver on an instance on the machine with 256 GB of memory and then only
switched to the 1 TB machine if insufficient memory was available

▶ Cost: around $20,000 to run on Google cloud (excluding the cost of building and
rescaling the instances)
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Experimental Setup

Solver Configurations:
▶ PDLP: With and without feasibility polishing

▶ Gurobi 11.0.2: Barrier, primal simplex, and dual simplex (crossover disabled)

Termination Criteria:
▶ PDLP: ℓ∞ primal/dual residuals < 10−8, relative gap < 1%:∣∣∣c⊤x + p (y ; ℓc , uc) + p (r ; ℓv , uv )

∣∣∣
max {|c⊤x | , |p (y ; ℓc , uc) + p (r ; ℓv , uv )|} ≤ 10−2

▶ Gurobi: Default settings (ℓ∞ tolerance 10−6, gap 10−8)
“We do not believe that matching Gurobi’s termination criteria to ours would make a
significant difference to the results. In particular, Gurobi’s barrier implementation mostly
experiences OOM errors, and so is unaffected by the termination criteria; and simplex
methods only find a primal and dual feasible solution at the optimum.”
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Performance Comparison: PDLP vs. Commercial Solvers

Key Findings:
▶ Memory efficiency: Gurobi barrier hit OOM on 8/11 instances

▶ PDLP with polishing: Solved 8/11 instances

▶ PDLP without polishing: Solved only 2/11 instances

▶ Gurobi simplex: Competitive in memory usage but slower (dual simplex solved only
4/11 instances within 144 hours)

Solution Quality:
▶ Relative duality gaps from PDLP typically much better than 1% target

▶ Most instances: < 0.1% gap

▶ Shipping instances: < 0.4% gap
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Performance Results: Solve Time (Hours)

PDLP Gurobi

Instance name Without polishing With polishing Barrier Dual Primal

design-match 68.0 9.3 OOM 75.3 32.4
tsp-gaia-10m TIME 3.0 28.1 90.1 40.2
tsp-gaia-100m TIME 21.1 OOM OOM OOM
heat-source-easy TIME 60.0 OOM ERR TIME
heat-source-hard TIME TIME OOM ERR TIME
production-inventory TIME TIME 5.8 TIME 43.7
qap-tho-150 ERR ERR OOM TIME TIME
qap-wil-100 44.4 0.3 OOM TIME TIME
world-shipping TIME 53.8 OOM TIME TIME
mediterranean-shipping TIME 32.6 OOM TIME TIME
supply-chain TIME 18.9 2.5 4.2 TIME

Legend:
▶ TIME: Exceeded 144 hours limit

▶ OOM: Out of memory (exceeded 1TB RAM)

▶ ERR: Solver encountered an error
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Solution Quality: PDLP with Feasibility Polishing

Instance name Primal objective Absolute gap Relative gap (%)

design-match 2.87× 106 5.53× 10−2 0.0000001
tsp-gaia-10m 1.3× 108 3.01× 103 0.0012
tsp-gaia-100m 1.94× 109 5.82× 104 0.0015
heat-source-easy 5.16× 107 9.06× 10−4 0.00000000088
qap-wil-100 2.21× 105 1.14× 102 0.026
world-shipping −1.18× 105 3.7× 102 0.16
mediterranean-shipping −1.07× 103 6.95× 100 0.33
supply-chain 1.08× 108 6.67× 103 0.0031

Key Observations:
▶ All problems solved with duality gaps substantially better than 1% target

▶ Six instances achieved gaps < 0.1%

▶ Heat-source-easy achieved near-perfect solution quality (gap ≈ 10−12%)

▶ Shipping problems (more challenging) still achieved < 0.4% gaps
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Key Takeaways from Numerical Experiments

▶ Feasibility polishing is transformative:
▶ 4× increase in problems solved
▶ 2-148× speedup over vanilla PDLP
▶ Delivers high-quality, feasible solutions with small gaps

▶ Memory efficiency makes previously unsolvable problems tractable:
▶ Successfully handles problems with billions of nonzeros
▶ Solves problems where interior point methods run out of memory

▶ Competitive time-to-solution on very large instances:
▶ Outperforms simplex methods on most large instances
▶ Barrier method faster when problems fit in memory
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GPU vs. CPU Architecture: Why GPUs for LP?

CPU Design:
▶ Few cores (16-64) with deep pipelines

▶ Optimized for sequential processing

▶ Sophisticated branch prediction

▶ Limited memory bandwidth

GPU Design:
▶ Thousands of cores (e.g., 7296 on

NVIDIA H100)

▶ Single Instruction Multiple Data (SIMD)

▶ Optimized for parallel computation

▶ Very high memory bandwidth (2 TB/sec
vs 137 GB/sec)

Key Challenge: Previous attempts at GPU acceleration for LP failed due to:
▶ Matrix factorization in simplex/IPM doesn’t parallelize well

▶ First-order methods (like PDHG) rely on matrix-vector operations - ideal for GPUs!
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GPU Thread Hierarchy and Execution Model

Thread Hierarchy:
▶ Thread: Basic execution unit

▶ Warp: 32 threads executing in lockstep

▶ Block: Group of threads with shared memory

▶ Grid: Collection of blocks executing same
kernel

Implications for PDLP:
▶ Matrix-vector operations can be massively parallelized

▶ Each thread can process individual vector elements

▶ Challenge: Reducing CPU-GPU communication overhead
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cuPDLP.jl: Design Principles

Minimizing CPU-GPU Communication:
▶ Initial transfer: Problem instance from

CPU to GPU

▶ Final transfer: Solution from GPU to
CPU

▶ All iterations computed entirely on GPU

Read

Preconditioning

Return

Restarted PDHG 

Evaluate 
progress metric 

Solution

LP instance

Scaled LP

Solution

CPU

GPU

Infeasibility 
detection 
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Efficient GPU Implementation Details

Implementation Framework:
▶ Implemented in Julia using CUDA.jl

▶ Custom CUDA kernels for PDHG updates

▶ cuSPARSE library for sparse matrix operations

Matrix and Vector Operations:
▶ Sparse matrix stored in Compressed Sparse Row (CSR) format

▶ Matrix-vector multiplication via cuSPARSE library

▶ Custom CUDA kernels for vector operations and projections

▶ One thread per vector element for maximum throughput
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Efficient GPU Implementation Details

KKT-Based Restart Scheme:
▶ Original PDLP: Trust-region algorithm for normalized duality gap

▶ Sequential nature - poor fit for GPU architecture

▶ cuPDLP.jl innovation: KKT error-based restart
▶ Highly parallelizable computation
▶ Maintains convergence properties
▶ Better suited for GPU execution model
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KKT-Based Restart Details

KKT Error Definition:

KKTω(z) =

√
ω2
∥∥∥∥( Ax − b

[h − Gx ]+
)∥∥∥∥2

2
+ 1

ω2 ∥c − K⊤y − λ∥2
2 + (q⊤y + l⊤λ+ − u⊤λ− − c⊤x)2

Restart Candidate Selection:

zn,t+1
c =

{
zn,t+1 if KKTωn(zn,t+1) < KKTωn(z̄n,t+1)
z̄n,t+1 otherwise

Restart Conditions: Algorithm restarts if any of these holds:
▶ Sufficient decay: KKTωn(zn,t+1

c ) ≤ 0.2 · KKTωn(zn,0)

▶ Necessary decay + no progress: KKTωn(zn,t+1
c ) ≤ 0.8 · KKTωn(zn,0) and no

improvement

▶ Long inner loop: Iteration count exceeds threshold
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Experimental Setup

Hardware Configuration:
▶ GPU: NVIDIA H100-PCIe-80GB (26 TFLOPS FP64, 2 TB/sec bandwidth)

▶ CPU: Intel Xeon Gold 6248R 3.00GHz (16 threads, 256 GFLOPS FP64)

Benchmark Sets:
▶ MIP Relaxations: 383 instances from MIPLIB 2017

▶ Small: 269 instances (100K-1M nonzeros)
▶ Medium: 94 instances (1M-10M nonzeros)
▶ Large: 20 instances (>10M nonzeros)

▶ Mittelmann’s LP: 49 classic LP benchmark instances
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Compared Methods

Compared Methods:
▶ cuPDLP.jl: GPU implementation in Julia

▶ PDLP: CPU implementations (Julia and C++ with 1/4/16 threads)

▶ Gurobi 11.0: Primal simplex, dual simplex, and barrier methods
▶ PDLP and cuPDLP.jl terminate when the original LP instance satisfies:∣∣∣q⊤y + l⊤λ+ − u⊤λ− − c⊤x

∣∣∣ ≤ ϵ
(
1 +

∣∣∣q⊤y + l⊤λ+ − u⊤λ−
∣∣∣+ ∣∣∣c⊤x

∣∣∣)∥∥∥∥∥
(

Ax − b
[h − Gx ]+

)∥∥∥∥∥
2

≤ ϵ (1 + ∥q∥2)
∥∥∥c − K⊤y − λ

∥∥∥
2

≤ ϵ (1 + ∥c∥2)

where ϵ = 10−4 for moderately accurate and ϵ = 10−8 for high-quality solutions.
▶ Gurobi’s parameters FeasibilityTol, OptimalityTol, and BarConvTol are set to

match the tolerances (10−4 or 10−8).
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cuPDLP.jl vs. Gurobi: Moderate Accuracy (10−4)

Small (269) Medium (94) Large (20) Total (383)
Count Time Count Time Count Time Count Time

cuPDLP.jl 266 8.61 92 14.80 19 111.19 377 12.02
Primal simplex 268 12.56 69 188.81 11 3145.49 348 39.81
Dual simplex 268 8.75 84 66.67 15 591.63 367 21.75

Barrier 268 5.30 88 45.01 18 415.78 374 14.92

Key Observations:
▶ cuPDLP.jl solves 377/383 instances (98.4%)

▶ Clear advantage on medium and large instances:
▶ 3x faster than simplex on medium instances
▶ 3.7x faster than barrier on large instances

▶ Results with presolve show even better performance
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cuPDLP.jl vs. CPU PDLP: Speedup Analysis

Small (269) Medium (94) Large (20) Total (383)
Count Time Count Time Count Time Count Time

cuPDLP.jl 266 8.61 92 14.80 19 111.19 377 12.02
FirstOrderLp.jl 253 35.94 82 155.67 12 2002.21 347 66.67

PDLP (1 thread) 256 22.69 85 98.38 15 1622.91 356 43.81
PDLP (4 threads) 260 24.03 91 42.94 15 736.20 366 34.57
PDLP (16 threads) 238 104.72 84 142.79 15 946.24 337 127.49

GPU Speedup vs. CPU:
▶ vs. FirstOrderLp.jl (Julia): 4x on small, 10x on medium, 18x on large instances

▶ vs. PDLP with 4 threads (best CPU): 2.9x overall speedup

▶ Solved 30 more instances than FirstOrderLp.jl at tolerance 10−4

▶ Speedup increases with problem size - ideal for large-scale problems
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Performance Analysis: Time to Solution

Figure: Performance of cuPDLP.jl vs. PDLP Figure: Performance of cuPDLP.jl vs. PDLP
without presolve
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Performance Analysis: Key Insights

Key Insights:
▶ cuPDLP.jl has 1 second overhead for GPU initialization

▶ After 10 seconds, cuPDLP.jl matches or exceeds barrier method performance

▶ cuPDLP.jl significantly outperforms all CPU PDLP implementations

▶ GPU advantage most significant on medium/large problems
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Performance on Mittelmann’s LP Benchmark

Tol 1E-04 Tol 1E-08
Count Time Count Time

cuPDLP.jl 44 71.26 40 231.91
Primal simplex 35 1937.78 34 1715.62
Dual simplex 36 1201.48 37 1116.68

Barrier 45 108.29 44 127.58

Tol 1E-04 Tol 1E-08
Count Time Count Time

cuPDLP.jl 44 71.26 40 231.91
FirstOrderLp.jl 34 917.49 25 2504.79

PDLP (4 threads) 40 302.54 34 930.41

Observations:
▶ Similar performance pattern as with MIP Relaxations

▶ cuPDLP.jl 4.2x faster than best CPU PDLP (4 threads)

▶ cuPDLP.jl significantly outperforms simplex methods

▶ Performance comparable to barrier method
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PDHG for Linear Programming
Consider the LP problem M = (G ; l , u, c; h) in standard form

min c⊤x
s.t. Gx ≥ h

l ≤ x ≤ u

where G ∈ Rm×n, h ∈ Rm, c ∈ Rn, l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n

Saddle point problem form: min
l≤x≤u

max
y≥0

L(x , y ; M) = c⊤x − y⊤Gx + h⊤y

Primal-Dual Hybrid Gradient (PDHG)

− Initialize x0 ∈ Rn, y0 ∈ Rm

For k = 0, 1, 2, ..., K − 1⌊
xk+1 = Projl≤x≤u(xk − τ(c − G⊤yk));
yk+1 = Projy≥0(yk + σ(h − 2Gxk+1 + Gxk)).
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Unrolling PDHG into PDHG-Net
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Figure: Overview of how each layer in PDHG-Net corresponds to each iteration of the traditional
PDHG algorithm, along with the overall architecture of PDHG-Net.
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Key Technique: Channel Expansion

▶ Expanding the n-dimensional vectors xk , yk into (n × dk)-dimensional matrices X k , Y k

with dk columns (or called channels following the convention of neural network)

▶ The linear combination xk − τ(c − G⊤yk) of primal-dual is replaced by

X kUk
x − τk(c · 1⊤dk+1 − G⊤Y kUk

y )

where Θk
p = (τk , Uk

x , Uk
y ) ∈ R × Rdk×dk+1 × Rdk×dk+1 is the trainable parameter of the

k-th primal NN block

▶ Generalizability to LP instances of different sizes: Following the principle of
classical unrolling, a natural idea would be to unroll xk − τ(c − G⊤yk) to

xk − τ(c − W kyk)

where W k is trainable matrix. This is unsuitable for applying to LP problems with
different sizes
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PDHG-Net

Architecture of PDHG-Net

− Initialize X 0 = [x0, l , u, c], Y 0 = [y0, h]
For k = 0, 1, 2, ..., K − 1

X k+1 = ReLU
(
X kUk

x − τk(c · 1⊤dk+1 − G⊤Y kUk
y )
)
,

Y k+1 = ReLU
(
Y kV k

y

+ σk(h · 1⊤dk+1 − 2GX k+1W k
x + GX kV k

x )
)
,

− Output XK ∈ Rn, Y K ∈ Rm

The trainable parameter is Θ = {Θk
p, Θk

d}K−1
k=0 , where

Θk
p = (τk , Uk

x , Uk
y ) ∈ R × Rdk×dk+1 × Rdk×dk+1

Θk
d = (σk , V k

x , V k
y , W k

x ) ∈ R × Rdk×dk+1 × Rdk×dk+1 × Rdk+1×dk+1
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Convergence Property of PDHG

Theorem
Let (xk , yk)k≥0 be the primal-dual variables generated by the PDHG algorithm for the LP
problem M = (G ; l , u, c; h). If the step sizes τ, σ satisfy τσ∥G∥2

2 < 1, then for any
(x , y) ∈ Rn × Rm

≥0 satisfying l ≤ x ≤ u, the primal-dual gap satisfies

L(x̄k , y ; M) − L(x , ȳk ; M)

≤ 1
2k
(∥x − x0∥2

τ
+ ∥y − y0∥2

σ
− (y − y0)⊤G(x − x0)

)
,

where x̄k = (∑k
j=1 x j)/k, ȳk = (∑k

j=1 y j)/k, and L is the Lagrangian defined by LP.
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Alignment Theorem: PDHG is a Specific PDHG-Net

Theorem

Given any pre-determined network depth K and the widths {dk}k≤K−1 with dk ≥ 10, there
exists a K-layer PDHG-Net with its parameter assignment ΘPDHG satisfying the following
property: given any LP problem M = (G ; l , u, c; h) and its corresponding primal-dual
sequence (xk , yk)k≤K generated by PDHG algorithm within K iterations, we have

1. For any hidden layer k, both x̄k and xk can be represented by a linear combination of
X k ’s channels, both ȳk and yk can be represented by a linear combination of Y k ’s
channels. Importantly, these linear combinations do not rely on the LP problem M.

2. PDHG-Net’s output embeddings XK ∈ Rn×1 and Y K ∈ Rm×1 are equal to the outputs
x̄K and ȳK of the PDHG algorithm, respectively.
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Estimate the Approximation Efficiency

Theorem

Given the approximation error bound ϵ, there exists a PDHG-Net with O(1/ϵ) number of
neurons and the parameter assignment ΘPDHG fulfilling the following property. For any LP
problem M = (G ; l , u, c; h) and (x , y) ∈ Rn × Rm

≥0 satisfying l ≤ x ≤ u, it holds that

L(XK , y ; M) − L(x , Y K ; M) < ϵ.

▶ The proof is rather concise to compare with Bipartite representation theorem

▶ Give an explicit estimation of the number of neurons required to represent a solution
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Numerical Result

▶ Training dataset: A set of instances denoted by I = {(M, z∗)}. The input of an
instance is an LP problem M = (G ; l , u, c; h); the label z∗ = (x∗, y∗) is the solution

▶ Loss Function: We train the PDHG-Net to minimize the ℓ2 square loss

min
Θ

LI(Θ) = 1
|I|

∑
(M,z∗)∈I

∥∥∥ZK (M; Θ) − z∗
∥∥∥2

2

▶ Metric: We calculate the improvement ratio over PDLP using the following equation:

Improv. = PDLP − ours
PDLP ,

where this metric is applicable to both the solving time and the number of iterations
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Overview of the Datasets

# nodes # vars. # cons. # nnz.
103 1,000 1,001 7,982
104 10,000 10,001 79,982

5 × 104 50,000 50,001 399,982
105 100,000 100,001 799,982
106 1,000,000 1,000,001 7,999,982

Table: Sizes of utilized PageRank instances.

dataset # vars. # cons. # nnz.
IP-S 31,350 15,525 5,291,250
IP-L 266,450 91,575 94,826,250
WA-S 80,800 98,830 3,488,784
WA-L 442,000 541,058 45,898,828

Table: Sizes of utilized instances.
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Two-stage Algorithm: PDHG-Net as Warm-start

1.0

3.1

…
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min 𝑐⊤𝑥
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𝑙 ≤ 𝑥 ≤ 𝑢

LP instance LP solution

PDHG-Net PDLP

Initial

solution

Proposed Algorithm

Figure: The proposed post-processing procedure warm-starts the PDLP solver using the prediction of
PDHG-Net as initial solutions to ensure optimality.

Table: Solve time comparison between the proposed framework and vanilla PDLP on PageRank
instances. The improvement ratio of the solving time is also reported.

# nodes ours PDLP Improv.
103 0.01sec. 0.04sec. ↑ 45.7%
104 0.4 sec. 1.1sec. ↑ 67.6%
105 22.4sec. 71.3sec. ↑ 68.6%
106 4,508sec. 16,502sec. ↑ 72.7%
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Efficiency and the Number of Restarts

Table: Comparison of the proposed framework against default PDLP in solving IP and WA instances.

dataset. time (sec.) # iters.
ours PDLP Improv. ours PDLP Improv.

IP-S 9.2 11.4 ↑ 19.5% 422 525 ↑ 19.5%
IP-L 7,866.3 10,045.6 ↑ 21.7% 6,048 8,380 ↑ 27.8%

WA-S 114.7 137.8 ↑ 16.7% 8,262 9,946 ↑ 16.9%
WA-L 4817.6 6426.2 ↑ 25.0% 14,259 17,280 ↑ 17.5%

Table: The average number of restarts in the PDLP solving process with our framework (ours) and
default settings (represented by PDLP).

# of Nodes 5 × 103 1 × 104 2 × 104 4 × 104

# restarts Ours 2.2 4.15 2.0 2.0
PDLP 5.9 11.7 20.25 11.3
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Prediction Accuracy v.s. Epochs
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Figure: The distance between the predicted solution of PDHG-Net and optimal solution in PageRank
training and validation instances with (a) 5 × 103, (b) 1 × 104, (c) 2 × 104, (d) 4 × 104 variable sizes.
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Improvement v.s. Prediction Accuracy
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Figure: We present the improvement ratio in both solving time and the number of iterations for
solutions extrapolated at varying distances from the optimal solution. Each blue dot symbolizes an
extrapolated solution, while the yellow line represents the trend line fitted through these points.
Results demonstrate a strong correlation.
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Generalizability to Larger Sizes

Table: Solving time and number of iterations for PageRank, IP and WA instances larger than training
set sizes. For clarity, we denote the size of the largest instance of IP and WA datasets as Large.

metric Dataset size ours PDLP Improv.

time (sec.)
PageRank 5 × 104 5.5 11.2 ↑ 50.9%

1 × 105 17.0 32.5 ↑ 47.8%
IP Large 6796.7 8631.4 ↑ 21.3%
WA Large 5599.1 5859.4 ↑ 4.4%

# iter.
PageRank 5 × 104 1,605 3,397 ↑ 52.7%

1 × 105 1,958 3,914 ↑ 50.0%
IP Large 7,291 8,970 ↑ 18.7%
WA Large 16,166 17,280 ↑ 6.4%
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Portion of GPU Time & Comparison with GNNs

Table: Comparison of total solving time and GPU time for initial solutions, including the ratio of GPU
time to total solving time.

# nodes. 103 104 105 106

GPU time (sec.) 0.01 0.02 0.21 1.12
CPU time (sec.) 0.02 0.4 22.4 4,508.3

Ratio 52.6% 5.7% 0.9% 0.02%

Table: Comparison of improvement ratio and ℓ2 distance between the proposed framework
implemented with PDHG-Net and GNN.

# nodes. Improv. ℓ2 distance
ours GNN ours GNN

103 ↑ 45.7% ↑ 1.4% 0.05 0.51
104 ↑ 67.6% ↑ 19.3% 0.2 1.38
105 ↑ 71.3% ↓ 4.0% 0.95 30.35
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Conclusion: The Role of PDLP

PDLP fills a critical gap in LP solving:
▶ Complements traditional solvers:

▶ Interior point methods: Fast but memory-intensive
▶ Simplex methods: Low memory but slow on very large problems
▶ PDLP: Low memory and reasonable speed on very large problems

▶ Feasibility polishing bridges the gap:
▶ Delivers high-quality feasible solutions
▶ Overcomes traditional limitations of first-order methods

▶ Practical impact:
▶ Enables solution of previously impossible problems
▶ Integrated into commercial offerings (COPT, FICO Xpress, etc.)
▶ Open source availability expands access to large-scale LP solutions
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Summary: GPU Acceleration for LP

Are GPUs useful for solving LP?
▶ Yes! cuPDLP.jl demonstrates comparable or better performance to commercial solvers

▶ GPU advantage increases with problem size

▶ First-order methods + GPU = competitive solution for large-scale LP

Key Contributions:
▶ Efficient GPU implementation of restart scheme using KKT error

▶ Minimal CPU-GPU communication design

▶ Reliable for real-world problems (solve rate >98%)

▶ Superior scalability for large instances compared to CPU implementations
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Future Work

Future Work:
▶ Extension to QP and other problem classes

▶ Multi-GPU parallelization

▶ Integration with mixed-integer programming heuristics
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