
Plug-and-Play: Algorithms, Parameters
Tuning and Interpretation

Zhonglin Xie

Peking University

February 28, 2022



Linear Inverse Problem

Formulation:

y = Ax+w, w ∼ N
(
0, σ2I

)
,

where A is a known block-diagonal matrix, and w denotes
Gaussian random vector with mean 0 and covariance σ2I.

Aim: Recovery x from y.

Application: Magnetic Resonance Imaging (MRI).



Signal Recovery and Denoising

The maximum likelihood (ML) estimate:

x̂ml , argmax
x

p(y | x),

where p(y | x), the probability density of y conditioned on
x, is known as the likelihood function.

The equivalent form:

x̂ml = argmin
x
{− ln p(y | x)}.

In the case of additive white Gaussian noise (AWGN)
N
(
0, σ2I

)
, we have

− ln p(y | x) =
1

2σ2
‖y −Ax‖22 + const.



Maximum A Posteriori (MAP)

Since A is fat, we can not perform least-squares estimation.

Use a regularization term φ(x) to encodes priori knowledge:

x̂ = argmin
x

{
1

2σ2
‖y −Ax‖22 + φ(x)

}
.

Bayes rule implies

ln p(x | y) = ln p(y | x) + ln p(x)− ln p(y).

The maximum a posteriori (MAP) estimate:

x̂map = argmin
x
{− ln p(y | x)− ln p(x)}.

x̂ can be recognized as x̂map with p(x) ∝ exp(−φ(x)).



More on φ(x)

φ(x) should mimic the negative log of the prior density.

φ(x) must enable tractable optimization.

Common choice: φ(x) = λ‖Ψx‖1, where ΨᵀΨ = I, λ > 0.

Advantages:
The problem remains convex.
The transform output Ψx is sparse.



Denoising

When A = I, the linear inverse problem reduces to

z = x+w, w ∼ N
(
0, σ2I

)
.

Recovering x from noisy z is known as denoising.

State-of-the-art approaches are either algorithmic or neural.

Can these state-of-the-art denoisers be leveraged for MRI?



PnP-ADMM

x̂ can be derived from an equivalent optimization

(x̂, v̂) = arg min
x,v∈Rn

1

2σ2
‖y −Ax‖22 + φ(v), s.t. x = v.

The augmented Lagrangian:

L(x,v;λ) =
1

2σ2
‖y −Ax‖22 + φ(v)− λᵀ(x− v) +

1

2η
‖x− v‖22

=
1

2σ2
‖y −Ax‖22 + φ(v) +

1

2η
‖x− v + u‖22,

where u = ηλ.



ADMM

Alternating the optimization of x, v with gradient ascent of u:

xk = h
(
vk−1 − uk−1;σ2/η

)
vk = proxφ (xk + uk−1; η)

uk = uk−1 + (xk − vk)

where

proxφ(z; η) , arg min
x∈Rn

φ(x) +
1

2η
‖x− z‖2,

h(z;σ2/η) , arg min
x∈Rn

1

2σ2
‖y −Ax‖2 +

1

2η
‖x− z‖2

=

(
AᵀA+

σ2

η
I

)−1(
Aᵀy +

σ2

η
z

)
.



PnP-ADMM

proxφ(z; η) can be recognized as the MAP denoiser of z.

PnP plug in a image denoiser in place of the proxφ(z; η).

Denoting the denoiser as f(·; η), PnP-ADMM writes:

xk = h
(
vk−1 − uk−1;σ2/η

)
vk = f (xk + uk−1; η)

uk = uk−1 + (xk − vk)

The fixed point of the ADMM is independent of η, while η
affects the fixed-point of the PnP-ADMM.

To promote the PnP-ADMM, we untie the parameters:

xk = h (vk−1 − uk−1;µk)
vk = f (xk + uk−1; ηk)

uk = uk−1 + (xk − vk)



Discussion: The Effects of the Denoising Strength η

Figure: The normalized mean-squared error (NMSE) versus iteration.
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PnP-ADMM



The Effects of the Denoising Strength ηk



RL Formulation for Automated Parameter Selection

Motivation: η, µ affect the result of the PnP-ADMM.

Manually tuned parameters are time-cost.

Aim: automatically select

τ and (η0, µ0, η1, µ1, · · · , ητ−1, µτ−1)

to recover xτ that close to x.

Tool: Reinforcement Learning (RL).



Markov decision process (MDP) (S,A, p, r)

State space S: any feasible value of (xk,vk,uk).

Action space A: any feasible value of τ and (µk, ηk).

Transition function p : S ×A → S

several iterations of the PnP-ADMM.

Reward function r : S ×A → R

r (st, at) = [ζ (p (st, at))− ζ (st)]− η.

ζ (st): the PSNR of the recovered image at step t.
η: penalizing the policy as it does not terminate at step t.



Workflow of TFPnP
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Figure: Workflow of the TFPnP instantiated by the PnP-ADMM.



Formal Definition of the Goal

sk = (xk,vk,uk), ak = (ak,1, ak,2), rk = r(sk, ak).

ak,2 = (µk, ηk). ak,1 is a boolean that terminates the iterate
at step k when ak,1 = 0 and versus verse.

Trajectory: T = {s0, a0, r0, · · · , sN , aN , rN}.
Given T and ρ ∈ [0, 1], define the return as

Rt =

N−t∑
t′=0

ρt
′
r (st+t′ , at+t′) .

Goal: learn a policy π to maximize

J(π) = Es0,π [R0] , π(a | s) : S ×A → [0, 1].



RL-based Policy Learning

State-value function:

V π(s) = Eπ [R0 | s0 = s]

Action-value function:

Qπ(s, a) = Eπ [R0 | s0 = s, a0 = a]

Policy: π = (π1, π2).
π1: a stochastic policy that generate at,1 to decide
whether to terminate.
π2: a deterministic policy that generate at,2.



Actor-critic Framework

Policy network (actor): πθ = (π1, π2) with θ = (θ1, θ2).
π1(· | s): S × {0, 1} → [0, 1], controlled by θ1.
π2(s): S → A, controlled by θ2.

Value network (critic): V π
φ (st).

Train the value network:

Lφ = Es∼B,a∼πθ(s)
[

1

2

(
r(s, a) + γV π

φ̂
(p(s, a))− V π

φ (s)
)2]

Model-free training of π1:

∇θ1J (πθ) = Es∼B,a∼πθ(s) [∇θ1 log π1 (a1 | s)Aπ(s, a)]

Model-based training of π2:

∇θ2J (πθ) = Es∼B,a∼πθ(s) [∇a2Qπ(s, a)∇θ2π2(s)]



Training Scheme

Algorithm 1 Training Scheme

Require: Image dataset D, degradation operator g(·), learning
rates lθ, lφ, weight parameter β.

1: Initialize network parameters θ, φ, φ̂ and state buffer B.
2: for each training iteration do
3: sample initial state s0 from D via g(·)
4: for environment step t ∈ [0, N) do
5: at ∼ πθ(at|st)
6: st+1 ∼ p(st+1|st, at)
7: B ← B ∪ {st+1}
8: break if the boolean outcome of at equals to 1
9: end for

10: for each gradient step do
11: sample states from the state buffer B
12: θ1 ← θ1 + lθOθ1J(πθ)
13: θ2 ← θ2 + lθOθ2J(πθ)
14: φ← φ− lφOφLφ
15: φ̂← βφ+ (1− β)φ̂
16: end for
17: end for
Ensure: Learned policy network πθ



Experiment Results: CS-MRI

RecPF FCSA ADMMNet ISTANet BM3D-MRI IRCNN Ours Ground Truth

22.57 22.27 24.15 24.61 23.64 24.16 25.28 PSNR

18.74 19.23 20.48 21.37 20.62 20.91 22.02 PSNR

24.89 24.47 26.85 27.90 26.72 27.74 28.65 PSNR

Figure: Visual and numerical CS-MRI reconstruction comparison
against the state-of-the-art techniques on medical images. The
numerical values denote the PSNR obtained by each technique.



Rethinking of the PnP-ADMM: On Derivation

f is not the proximal map of any regularizer φ.

f coincides with proxφ(z; η) only when

p(x) ∝ exp(−φ(x)), z − ztrue ∼ N (0, η2I).

However, p(x) may not prompt to exp(−φ(x)) and the
distribution of

(xk + uk−1)− (xk + uk−1)true

is unknown!

PnP-ADMM is a result of the similarity of the formulation.



Rethinking of the PnP-ADMM: On Convergence

PnP-ADMM may not be an implementation of ADMM.

If the PnP-ADMM converges?

If it does converge, what it converges to?



PnP FISTA

min
x

1

2σ2
‖y −Ax‖22 + φ(x)

zk = sk−1 −
η

σ2
Aᵀ (Ask−1 − y)

xk = proxφ(zk; η)

sk = xk +
qk−1 − 1

qk
(xk − xk−1)

FISTA

zk = sk−1 −
η

σ2
Aᵀ (Ask−1 − y)

xk = f (zk)

sk = xk +
qk−1 − 1

qk
(xk − xk−1)

PnP FISTA

where it is typical to use qk =
(

1 +
√

1 + 4q2k−1

)
/2 and q0 = 1

with step-size η ∈
(
0, σ2‖A‖−22

)
.



Regularization by Denoising (RED)

Recover x from measurements y by solving

0 =
1

σ2
Aᵀ(Ax̂− y) +

1

η
(x̂− f(x̂)).

f is an arbitrary image denoiser.

When f is a sophisticated denoiser and η is well tuned, the
solutions x̂ are state-of-the-art.



RED: Assumptions

Define

ρRED(x) ,
1

2
〈x,x− f(x)〉, `(x;y) =

1

2σ2
‖y −Ax‖22.

We get
x̂RED = arg min

x∈Rn
`(x;y) + ρRED(x).

The denoiser f(x) obeys the following assumption:

1 Local Homogeneity:

f((1 + ε)x) = (1 + ε)f(x), ∀x ∈ Rn, 0 < ε� 1.

2 f(·) is differentiable where Jf ∈ Rn×n denotes its Jacobian.

3 Jacobian Symmetry: Jf(x)ᵀ = Jf(x),∀x ∈ Rn.

4 The spectral radius the Jacobian satisfies η(Jf(x)) ≤ 1.



RED: Proof

From the multivariate calculus:

∇ρRED(x) = x− 1

2
f(x)− 1

2
[Jf(x)]ᵀx.

Local homogeneity implies [Jf(x)]x = f(x):

0 = lim
ε→0

‖f(x+ εx)− f(x)− [Jf(x)]xε‖
‖εx‖

= lim
ε→0

‖(1 + ε)f(x)− f(x)− [Jf(x)]xε‖
‖εx‖

= lim
ε→0

‖f(x)− [Jf(x)]x‖
‖x‖

.

Jacobian symmetry gives ∇ρRED(x) = x− f(x).

η(Jf(x)) ≤ 1 guarantees the convexity.



RED: Remark

When the denoiser f(·) is locally homogeneous, then

∇ρRED(x) = x− f(x) ⇔ Jf(x) = [Jf(x)]ᵀ.

When Jf(·) 6= Jf(·)ᵀ, there exists no regularizer ρ(·) for
which ∇ρ(x) = x− f(x).

Many popular denoisers lack symmetric Jacobian, making
the gradient expression invalid.



Proximal-based PnP v.s. RED: a Toy Example

f(z) = Wz with W = W>.

f is the proximal map of φ(x) = (1/2η)x>
(
W−1 − I

)
x.

Proximal-based PnP:

x̂pnp = argmin
x

{
1

2σ2
‖y −Ax‖2 +

1

2η
x>
(
W−1 − I

)
x

}
RED:

x̂red = argmin
x

{
1

2σ2
‖y −Ax‖2 +

1

2η
x>(I −W )x

}



Algorithms for RED

GD, inexact ADMM, and a “fixed-point” heuristic that was
later recognized as a special case of the proximal gradient
(PG) algorithm.

Accelerated proximal gradient (fastest):

xk = h (vk−1; η/L)

zk = xk +
qk−1 − 1

qk
(xk − xk−1)

vk =
1

L
f (zk) +

(
1− 1

L

)
zk

where L > 0 is a design parameter that can be related to
the Lipschitz constant of φred (·).



RED as Score Matching

Given a training set {xt}Tt=1, the empirical prior model is

p̂(x) ,
1

T

T∑
t=1

δ (x− xt)

Build a prior model using kernel density estimation (KDE):

p̃(x; η) ,
1

T

T∑
t=1

N (x;xt, ηI)

Adopting p̃ as the prior, MAP becomes

x̂ = argmin
x

1

2σ2
‖y −Ax‖2 − ln p̃(x; η)



RED as Score Matching

Because ln p̃ is differentiable, x̂ must obey

0 =
1

σ2
A>(Ax̂− y)−∇ ln p̃(x̂; η)

fmmse(z; η) = E[x|z], where z = x+N (0, ηI),x ∼ p̂
Tweedie’s formula says that

∇ ln p̃(z; η) =
1

η
(fmmse(z; η)− z)

The MAP estimate x̂ under the KDE prior p̃ obeys

0 =
1

σ2
A>(Ax̂− y) +

1

η
(x̂− fmmse(x̂; η))

which matches the RED condition when f = fmmse(·; η)



RED as Score Matching: f 6= fmmse(·; η)
f θ: neural denoiser parameterized by θ

Training strategy:

min
θ

E‖x− f θ(z)‖2, where x ∼ p̂, z = x+N (0, ηI)

MMSE orthogonality principle:

E ‖x− fθ(z)‖2 =E ‖x− fmmse(z; η)‖2

+ E ‖fmmse(z; η)− fθ(z)‖2

Using Tweedie’s formula, we get

θ̂ = argmin
θ

E‖x− f θ(z)‖2

= argmin
θ

E ‖fmmse(z; η)− fθ(z)‖2

= argmin
θ

E‖∇ ln p̃(z; η)− 1

η
(fθ(z)− z) ‖2

Choose θ so that (fθ(z)− z)/η matches the “score” ∇ ln p̃



CE for Prox-based PnP

View Prox-based PnP as seeking a solution to

x̂pnp = h (x̂pnp − ûpnp; η)

x̂pnp = f (x̂pnp + ûpnp)

It equals to find a fixed point of

z = (2G− I)(2F − I)z

z =

[
z1
z2

]
, F(z) =

[
h (z1; η)
f (z2)

]
, G(z) =

[
(z1 + z2) /2
(z1 + z2) /2

]
Mann iteration writes:

z(k+1) = (1− γ)zk + γ(2G− I)(2F − I)z(k)



CE for RED
CE for ADMM-based RED:

x̂red = h (x̂red − ûred; η)

x̂red =

((
1 +

1

L

)
I − 1

L
f

)−1
(x̂red + ûred)

A more intuitive form:

x̂red = h (x̂red − ûred; η)

x̂red = f (x̂red) + Lûred

Solving the first equation gives:

ûred =
η

σ2
Aᵀ (y −Ax̂red)

Plugging ûred back:

Lη

σ2
Aᵀ (Ax̂red − y) = f (x̂red)− x̂red



RED via Fixed-point Projection (RED-PRO)

RED-PRO problem writes:

x̂RED−PRO = arg min
x∈Rn

`(x;y), s.t. x ∈ Fix(f).

Interpretation: searching for a minimizer of `(x;y) over the
set of “clean” images.

The manifold of natural images M is generally not
well-defined, it is not easy accessible and it is not convex,
making the search within this domain difficult. Therefore,
as an alternative, we propose to use Fix(f) which is
well-behaved for demicontractive denoisers and should
satisfy M⊂ Fix(f) for a “perfect” denoiser.

Common denoisers are far from being ideal, hence, the
solution is sensitive to the choice of the denoiser and it may
vary considerably for different choices.



d-demicontractive Mapping

A mapping T is d-demicontractive (d ∈ [0, 1)) if for any x ∈ Rn
and z ∈ Fix(T ) it holds that

‖T (x)− z‖2 ≤ ‖x− z‖2 + d‖T (x)− x‖2

or equivalently

1− d
2
‖x− T (x)‖2 ≤ 〈x− T (x),x− z〉



RED-PRO

Assume the denoiser f(·) is a d-demicontractive mapping.
Then, RED-PRO defines a convex minimization problem.

Consider a demicontractive denoiser f(·) and assume
f(0) = 0. Then,

ρRED(x) =
1

2
〈x,x− f(x)〉 = 0 iff x ∈ Fix(f).

Hybrid steepest descent method for RED-PRO:

vk+1 = xk − µk∇` (xk;y) ,

zk+1 = f (vk+1) ,

xk+1 = (1− α)vk+1 + αzk+1,

which is equivalent to

xk+1 = fα(xk − µk∇`(xk;y)), where fα = (1− α)Id + αf.



Uniform Algorithm Framework

accelerated-PG (proximal gradient) RED algorithm, which
uses the iterative update:

vk+1 = xk − µk∇` (xk;y) ,

zk+1 = vk+1 + qk (vk+1 − vk) , (FISTA-like acceleration)

xk+1 = (1− α)zk+1 + αf (zk+1) , (SOR-like acceleration)

Thus, when we set qk ≡ 0, i.e. when we skip the
acceleration step, the above RED variant reduces to the
iterative update of the Hybrid steepest for RED-PRO.

When we continue and set α = 1, we obtain the PnP-PGD
method (Proximal-based).



Projection Gradient Descent

Projected Gradient Descent writes

xk+1 = PFix(f) (xk − µk∇`(x; y))

Replacing the projection operator PFix(f)(·) with denoiser
(Plug and Play) f(·) we get PnP-PGD:

xk+1 = f (xk − µk∇`(x; y))



Convergence Theorem

Let f(·) be a continuous d-demicontractive denoiser and `(·;y)
be a proper convex lower semicontinuous differentiable function
with L-Lipschitz gradient ∇`(·;y). Assume the following:

(A1) α ∈ (0,
1− d

2
).

(A2) {µk}k∈N ⊂ [0,∞) where µk →
k→∞

0 and
∑
k∈N

µk =∞.

Then, the sequence {xk}k∈N generated by

xk+1 = fα(xk − µk∇`(xk;y)), where fα = (1− α)Id + αf,

converges to an optimal solution of the RED-PRO problem:

x̂RED−PRO = arg min
x∈Rn

`(x;y), s.t. x ∈ Fix(f).



Conclusion

There are various ways to model the denoising problem:

1 PnP: Inspired by ADMM, Proximal gradient, while lacking
objective function.

2 RED: Regularization by Denoising, while many denoisers
do not satisfy the assumptions.

3 RED-PRO: require the denoisers to be demicontractive.

However, as pointed by, when applying practical algorithms
(e.g. PnP-ADMM and PnP primal-dual hybrid gradient
method (PnP-PDHG) , satisfy the same fixed-point equation as
PnP-PGM (Proximal Gradient Method)) to solve these models,
different models have the same aim:

x∗ = fα(x∗ − µk∇`(x∗;y)), where fα = (1− α)Id + αf.

Thus, we only need to guarantee the convergence of the above
formulation.



Future Directions

RL for general parameters tuning

The convergence theory of the PnP with weaker
assumptions

PnP for general ADMM-based algorithms
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