Poisson Kernel on the Upper Half-Space Integrates to 1 on the Boundary
在 Evans PDE 的 P38 关于 Laplace 方程解的推导中需用到如下积分:
\[\int_{\partial \mathbb{R}^{n}_{+}} K(x,y)\, \mathrm{d}y = 1,\]其中
\[K(x, y):=\frac{2 x_{n}}{n \alpha(n)} \frac{1}{|x-y|^{n}} \quad(x \in \mathbb{R}_{+}^{n}, y \in \partial \mathbb{R}_{+}^{n})\]为 \(n\) 维空间上的泊松核 (Poisson Kernel), \(\mathbb{R}^{n}_{+}=\{(y_1,y_2,\cdots,y_n)\mid y_n > 0\}\) 表示 \(n\) 维空间的上半空间, \(\partial \mathbb{R}^{n}_{+}=\mathbb{R}^{n-1}\) 为 \(\mathbb{R}^{n}_{+}\) 的边界,
\[\alpha(n)=\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}\]为 \(\mathbb{R}^{n}\) 中单位球的体积. 利用 \(\partial \mathbb{R}^{n}_{+}\) 与 \(\mathbb{R}^{n-1}\) 的等价性可得
\[\begin{aligned} \int_{\partial \mathbb{R}_+^n} K(x,y) \,\mathrm{d}y &= \int_{\mathbb{R}^{n-1}} K(x,y) \,\mathrm{d}y \\&= \int_{\mathbb{R}^{n-1}} \frac{2x_n}{n \alpha(n)} \frac{1}{|x-y|^n} \,\mathrm{d}y \\ &= \frac{2x_n}{n \alpha(n)} \int_{\mathbb{R}^{n-1}}\frac{1}{(x_{n}^2+y_{1}^2+...+y_{n-1}^2)^{\frac{n}{2}}} \,\mathrm{d}y \\&= \frac{2x_n}{n \alpha(n)} \int_{\mathbb{R}^{n-1}}\frac{1}{(x_{n}^2+|y|^2)^{\frac{n}{2}}} \,\mathrm{d}y\\ &= \frac{2}{n \alpha(n)x_n^{n-1}} \int_{\mathbb{R}^{n-1}}\frac{1}{(1+|y/x_n|^2)^{\frac{n}{2}}} \,\mathrm{d}y \end{aligned}\]做变量代换 \(z=y/x_n\) 得
\[\int_{\partial \mathbb{R}_+^n} K(x,y) \,\mathrm{d}y = \frac{2}{n \alpha(n)} \int_{\mathbb{R}^{n-1}}\frac{1}{(1+|z|^2)^{\frac{n}{2}}} \,\mathrm{d}z.\]借助 \(n-1\) 维空间中的极坐标变换, 上式可以写为
\[\begin{aligned} \frac{2}{n \alpha(n)} \int_{\mathbb{R}^{n-1}}\frac{1}{(1+|z|^2)^{\frac{n}{2}}} \,\mathrm{d}z &= \frac{2}{n \alpha(n)} \int_{0}^{\infty}\int_{\partial B(0,r)}\frac{1}{(1+r^2)^{\frac{n}{2}}}\,\mathrm{d}S \,\mathrm{d}r \\ &= \frac{2(n-1)\alpha(n-1)}{n \alpha(n)} \int_{0}^{\infty}\frac{r^{n-2}}{(1+r^2)^{\frac{n}{2}}} \,\mathrm{d}r, \end{aligned}\]其中 \(B(0,r)=\{x\in \mathbb{R}^{n-1}\mid \|x\|^2<r\}\) 是 \(n-1\) 维空间中以原点为球心, \(r\) 为半径的开球. 第二个等号用到了 \(n-1\) 维空间中球的表面积公式
\[\int_{\partial B(0,r)} 1 \,\mathrm{d}S = (n-1)\alpha(n-1)r^{n-2}.\]记 \(S(n)=n\alpha(n)\), 它实际上等于 \(n\) 维空间中单位球的表面积, 利用 \(\Gamma\) 函数的性质
\[\begin{aligned} \Gamma(z+1) &=\int_{0}^{\infty} x^{z} e^{-x} \,\mathrm{d} x \\ &=\left[-x^{z} e^{-x}\right]_{0}^{\infty}+\int_{0}^{\infty} z x^{z-1} e^{-x} \,\mathrm{d} x \\ &=\lim_{x \rightarrow \infty}\left(-x^{z} e^{-x}\right)-\left(-0^{z} e^{-0}\right)+z \int_{0}^{\infty} x^{z-1} e^{-x} \,\mathrm{d} x\\ &=z\Gamma(z) \end{aligned}\]知 \(\Gamma(\frac{n}{2}+1)=\frac{n}{2}\Gamma(\frac{n}{2})\), 于是
\[S(n)=n\alpha(n)=\frac{n\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}=\frac{2\pi^{n/2}}{\Gamma(\frac{n}{2})}.\]最终我们得到
\[\begin{aligned} \frac{2(n-1)\alpha(n-1)}{n \alpha(n)} \int_{0}^{\infty}\frac{r^{n-2}}{(1+r^2)^{\frac{n}{2}}} \,\mathrm{d}r = \frac{2S(n-1)}{S(n)} \int_{0}^{\infty}\frac{r^{n-2}}{(1+r^2)^{\frac{n}{2}}} \,\mathrm{d}r \\ = \frac{2\Gamma(\frac{n}{2})}{\Gamma(\frac{n-1}{2})\sqrt{\pi}}\int_{0}^{\infty}\frac{r^{n-2}}{(1+r^2)^{\frac{n}{2}}}\,\mathrm{d}r. \end{aligned}\]于是只需验证
\[\int_{0}^{\infty}\frac{r^{n-2}}{(1+r^{2})^{\frac{n}{2}}}\,\mathrm{d}r=\frac{\Gamma(\frac{n-1}{2})\sqrt{\pi}}{2\Gamma(\frac{n}{2})}.\]我们对 \(n\) 归纳, 当 \(n=2\) 时
\[\begin{aligned} \int_{0}^{\infty}\frac{1}{1+r^2}\,\mathrm{d}r&=\int_{0}^{\frac{\pi}{2}}\frac{1}{\cos^{2}r(1+\tan^{2}r)}\,\mathrm{d}r\\ &=\int_{0}^{\frac{\pi}{2}}\frac{\cos^2r}{\cos^2r}\,\mathrm{d}r=\frac{\pi}{2}. \end{aligned}\]\(n\geq 3\)时, 由分部积分可知
\[\begin{aligned} \int_{0}^{\infty}\frac{r^{n-2}}{(1+r^{2})^{\frac{n}{2}}}\,\mathrm{d}r &=-\frac{1}{n-2}\int_{0}^{\infty}r^{n-3}\,\mathrm{d}\frac{1}{(1+r^2)^{\frac{n-2}{2}}}\\ &=\underbrace{\left[-\frac{1}{n-2}\frac{1}{(1+r^2)^{\frac{n-2}{2}}}r^{n-3}\right]_{0}^{\infty}}_{=0}+\frac{n-3}{n-2}\int_{0}^{\infty}\frac{r^{n-4}}{(1+r^{2})^{\frac{n-2}{2}}}\,\mathrm{d}r. \end{aligned}\]由归纳法的假设
\[\begin{aligned} \int_{0}^{\infty}\frac{r^{n-4}}{(1+r^{2})^{\frac{n-2}{2}}}\,\mathrm{d}r=\frac{\Gamma(\frac{n-3}{2})\sqrt{\pi}}{2\Gamma(\frac{n-2}{2})} \end{aligned}\]及 \(\Gamma\) 函数的性质 \(z\Gamma(z)=\Gamma(z+1)\) 得
\[\begin{aligned} \int_{0}^{\infty}\frac{r^{n-2}}{(1+r^{2})^{\frac{n}{2}}}\,\mathrm{d}r&=\frac{n-3}{n-2}\int_{0}^{\infty}\frac{r^{n-4}}{(1+r^{2})^{\frac{n-2}{2}}}\,\mathrm{d}r\\ &=\frac{\frac{n-3}{2}}{\frac{n-2}{2}}\frac{\Gamma(\frac{n-3}{2})\sqrt{\pi}}{2\Gamma(\frac{n-2}{2})}\\ &=\frac{\Gamma(\frac{n-1}{2})\sqrt{\pi}}{2\Gamma(\frac{n}{2})}, \end{aligned}\]故结论成立.
Enjoy Reading This Article?
Here are some more articles you might like to read next: